Skip to main content
Log in

The inhibition performance of hydroxy lauric imidazoline for mild steel in chloride solution saturated with CO2

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In the paper, a novel hydroxy lauric imidazoline (HL-IM) was synthesized using lauric acid and ethylene diamine as raw materials. Methanol reaction method was introduced to prepare the hydroxy lauric imidazoline (HL-IM). According to the results of experiments, the optimum synthesis conditions of methanol reaction was determined through orthogonal experiment, which were: methyl laurate: ethylene diamine = 1: 1, sodium methoxide (0.75 wt %), reaction temperature 100°C, reaction time 2 h. The inhibition efficiency of HL-IM inhibitor was investigated in the condition of 5 wt % NaCl solutions saturated with CO2 at 333.15 K for 72 h. With 150 mg L–1 inhibitor dosage, the efficiency of inhibition reached 90.17% by weight loss method. Through film-forming property, foaming characteristic, and emulsification tendency test, it w a s shown that HL-IM had good water-solubility, a smaller emulsification tendency in 5 wt % NaCl solution, and a little foaming performance. Meanwhile, referring to the polarization curves tests, the synergistic effect of HL-IM with the potassium iodide, methylbutynol, and cetyltrimethyl ammonium bromide was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dawson, J.L., G. John, and K. Oliver, in Shreir’s Corrosion, Stott, B.C.G.L.L.R.S., Ed.. Elsevier: Oxford, 2010, p. 3230–3269.

  2. Nam, N.D., et al., Corrosion Sci., 2013, vol. 76, pp. 257–266.

    Article  CAS  Google Scholar 

  3. Nam, N.D., et al., Corrosion Sci., 2014, vol. 80, pp. 128–138.

    Article  CAS  Google Scholar 

  4. Ortega-Toledo, D.M., et al., Corrosion Sci., 2011, vol. 53, no. 11, pp. 3780–3787.

    Article  CAS  Google Scholar 

  5. Okafor, P.C., Liu, X., and Zheng, Y.G., Corrosion Sci., 2009, vol. 51, no. 4, pp. 761–768.

    Article  CAS  Google Scholar 

  6. Heydari, M. and Javidi, M., Corrosion Sci., 2012, vol. 61, pp. 148–155.

    Article  CAS  Google Scholar 

  7. Jawich, M.W.S., Oweimreen, G.A., and Ali, G.A., Corrosion Sci., 2012, vol. 65, pp. 104–112.

    Article  CAS  Google Scholar 

  8. Jevremovic, I., et al., Corrosion Sci., 2013, vol. 77, pp. 265–272.

    Article  CAS  Google Scholar 

  9. Zhang, K., et al., Corrosion Sci., 2015, vol. 90, pp. 284–295.

    Article  CAS  Google Scholar 

  10. Liu, F., et al., Corrosion Sci., 2015, vol. 93, pp. 293–300.

    Article  CAS  Google Scholar 

  11. Jevremovic, I., et al., Corrosion Sci., 2013, vol. 77, pp. 265–272.

    Article  CAS  Google Scholar 

  12. Finšgar, M. and Jackson, J., Corrosion Sci., 2014, vol. 86, pp. 17–41.

    Article  Google Scholar 

  13. Olivares-Xometl, O., et al., Appl. Surface Sci., 2006, vol. 252, no. 6, pp. 2139–2152.

    Article  CAS  Google Scholar 

  14. He, X., et al., Corrosion Sci., 2014, vol. 83, pp. 124–136.

    Article  CAS  Google Scholar 

  15. Lu, P., et al., Arc. Biochem. & Biophys., 1997, vol. 337, no. 1, pp. 1–7.

    Article  CAS  Google Scholar 

  16. El-Haddad, M.N., Carbohydrate Polymers, 2014, vol. 112, pp. 595–602.

    Article  CAS  Google Scholar 

  17. Jabeera, B., Shibli, S.M.A., and Aniradhan, T.S. Appl. Surface Sci., 2006, vol. 252, no. 10, pp. 3520–3524.

    Article  CAS  Google Scholar 

  18. Negm, N.A., et al., Corrosion Sci., 2012, vol. 65, pp. 94–103.

    Article  CAS  Google Scholar 

  19. Liu, F.G., et al., Corrosion Sci., 2009, vol. 51, no. 1, pp. 102–109.

    Article  Google Scholar 

  20. Obot, I.B., et al., J. Ind. & Eng. Chem., 2015, vol. 21, pp. 1328–1339.

    Article  CAS  Google Scholar 

  21. Yildiz, R., Corrosion Sci., 2015, vol. 90, pp. 544–553.

    Article  CAS  Google Scholar 

  22. Hamani, H., et al., Corrosion Sci., 2014, vol. 88, pp. 234–245.

    Article  CAS  Google Scholar 

  23. McCafferty, E., Corrosion Sci., 2005, vol. 47, no. 12, pp. 3202–3215.

    Article  CAS  Google Scholar 

  24. Arukalam, I.O., Carbohydrate Polymers, 2014, vol. 112, pp. 291–299.

    Article  CAS  Google Scholar 

  25. Qian, B., et al., Corrosion Sci., 2013, vol. 75, pp. 184–192.

    Article  CAS  Google Scholar 

  26. Zhang, F., et al., Science, 2010, vol. vol. 52, vol. 9, pp. 3042–3051.

    Google Scholar 

  27. Herrag, L., et al., Corrosion Sci., 2012, vol. 61, pp. 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi He or PinYa Luo.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., He, Y., Luo, P. et al. The inhibition performance of hydroxy lauric imidazoline for mild steel in chloride solution saturated with CO2 . Russ J Appl Chem 89, 304–314 (2016). https://doi.org/10.1134/S10704272160020221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S10704272160020221

Keywords

Navigation