Russian Journal of Applied Chemistry

, Volume 89, Issue 2, pp 304–314 | Cite as

The inhibition performance of hydroxy lauric imidazoline for mild steel in chloride solution saturated with CO2

Various Technological Processes
  • 39 Downloads

Abstract

In the paper, a novel hydroxy lauric imidazoline (HL-IM) was synthesized using lauric acid and ethylene diamine as raw materials. Methanol reaction method was introduced to prepare the hydroxy lauric imidazoline (HL-IM). According to the results of experiments, the optimum synthesis conditions of methanol reaction was determined through orthogonal experiment, which were: methyl laurate: ethylene diamine = 1: 1, sodium methoxide (0.75 wt %), reaction temperature 100°C, reaction time 2 h. The inhibition efficiency of HL-IM inhibitor was investigated in the condition of 5 wt % NaCl solutions saturated with CO2 at 333.15 K for 72 h. With 150 mg L–1 inhibitor dosage, the efficiency of inhibition reached 90.17% by weight loss method. Through film-forming property, foaming characteristic, and emulsification tendency test, it w a s shown that HL-IM had good water-solubility, a smaller emulsification tendency in 5 wt % NaCl solution, and a little foaming performance. Meanwhile, referring to the polarization curves tests, the synergistic effect of HL-IM with the potassium iodide, methylbutynol, and cetyltrimethyl ammonium bromide was studied.

Keywords

Microwave Power Lauric Acid Imidazoline Potassium Iodide Orthogonal Experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dawson, J.L., G. John, and K. Oliver, in Shreir’s Corrosion, Stott, B.C.G.L.L.R.S., Ed.. Elsevier: Oxford, 2010, p. 3230–3269.Google Scholar
  2. 2.
    Nam, N.D., et al., Corrosion Sci., 2013, vol. 76, pp. 257–266.CrossRefGoogle Scholar
  3. 3.
    Nam, N.D., et al., Corrosion Sci., 2014, vol. 80, pp. 128–138.CrossRefGoogle Scholar
  4. 4.
    Ortega-Toledo, D.M., et al., Corrosion Sci., 2011, vol. 53, no. 11, pp. 3780–3787.CrossRefGoogle Scholar
  5. 5.
    Okafor, P.C., Liu, X., and Zheng, Y.G., Corrosion Sci., 2009, vol. 51, no. 4, pp. 761–768.CrossRefGoogle Scholar
  6. 6.
    Heydari, M. and Javidi, M., Corrosion Sci., 2012, vol. 61, pp. 148–155.CrossRefGoogle Scholar
  7. 7.
    Jawich, M.W.S., Oweimreen, G.A., and Ali, G.A., Corrosion Sci., 2012, vol. 65, pp. 104–112.CrossRefGoogle Scholar
  8. 8.
    Jevremovic, I., et al., Corrosion Sci., 2013, vol. 77, pp. 265–272.CrossRefGoogle Scholar
  9. 9.
    Zhang, K., et al., Corrosion Sci., 2015, vol. 90, pp. 284–295.CrossRefGoogle Scholar
  10. 10.
    Liu, F., et al., Corrosion Sci., 2015, vol. 93, pp. 293–300.CrossRefGoogle Scholar
  11. 11.
    Jevremovic, I., et al., Corrosion Sci., 2013, vol. 77, pp. 265–272.CrossRefGoogle Scholar
  12. 12.
    Finšgar, M. and Jackson, J., Corrosion Sci., 2014, vol. 86, pp. 17–41.CrossRefGoogle Scholar
  13. 13.
    Olivares-Xometl, O., et al., Appl. Surface Sci., 2006, vol. 252, no. 6, pp. 2139–2152.CrossRefGoogle Scholar
  14. 14.
    He, X., et al., Corrosion Sci., 2014, vol. 83, pp. 124–136.CrossRefGoogle Scholar
  15. 15.
    Lu, P., et al., Arc. Biochem. & Biophys., 1997, vol. 337, no. 1, pp. 1–7.CrossRefGoogle Scholar
  16. 16.
    El-Haddad, M.N., Carbohydrate Polymers, 2014, vol. 112, pp. 595–602.CrossRefGoogle Scholar
  17. 17.
    Jabeera, B., Shibli, S.M.A., and Aniradhan, T.S. Appl. Surface Sci., 2006, vol. 252, no. 10, pp. 3520–3524.CrossRefGoogle Scholar
  18. 18.
    Negm, N.A., et al., Corrosion Sci., 2012, vol. 65, pp. 94–103.CrossRefGoogle Scholar
  19. 19.
    Liu, F.G., et al., Corrosion Sci., 2009, vol. 51, no. 1, pp. 102–109.CrossRefGoogle Scholar
  20. 20.
    Obot, I.B., et al., J. Ind. & Eng. Chem., 2015, vol. 21, pp. 1328–1339.CrossRefGoogle Scholar
  21. 21.
    Yildiz, R., Corrosion Sci., 2015, vol. 90, pp. 544–553.CrossRefGoogle Scholar
  22. 22.
    Hamani, H., et al., Corrosion Sci., 2014, vol. 88, pp. 234–245.CrossRefGoogle Scholar
  23. 23.
    McCafferty, E., Corrosion Sci., 2005, vol. 47, no. 12, pp. 3202–3215.CrossRefGoogle Scholar
  24. 24.
    Arukalam, I.O., Carbohydrate Polymers, 2014, vol. 112, pp. 291–299.CrossRefGoogle Scholar
  25. 25.
    Qian, B., et al., Corrosion Sci., 2013, vol. 75, pp. 184–192.CrossRefGoogle Scholar
  26. 26.
    Zhang, F., et al., Science, 2010, vol. vol. 52, vol. 9, pp. 3042–3051.Google Scholar
  27. 27.
    Herrag, L., et al., Corrosion Sci., 2012, vol. 61, pp. 1–9.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.State Key Lab of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengdu, SichuanChina
  2. 2.School of Chemistry and Chemical EngineeringSouthwest Petroleum UniversityChengdu, SichuanChina

Personalised recommendations