Russian Journal of Applied Chemistry

, Volume 88, Issue 10, pp 1576–1581 | Cite as

Effect of peroxide depolymerization of chitosan on properties of chitosan sulfate particles produced from this substance

  • E. A. Mezina
  • I. M. Lipatova
Various Physicochemical and Technological Processes


Effect of the oxidative destruction of chitosan on the rate at which a dispersed phase is formed in its dilute solutions in the presence of sulfate ions and on the composition, size and ζ-potential of submicrometer chitosan sulfate particles being formed was studied. It was found that the particle size steadily decreases as the molecular mass of chitosan becomes smaller, and the sedimentation stability of aqueous dispersions increases in the absence of surfactants. The \(\nu _{SO_4 } :\nu _{NH_2 }\) molar ratio in chitosan sulfate particles is independent of the molecular mass of chitosan and varies within the range 0.45–0.46. A pH-dependence of the sign of the ζ-potential with isoelectric point at pH 5.0 was found for particles based on destructed chitosan.


Chitosan Molecular Mass Disperse Phase Magnesium Sulfate Protonated Amino Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mayyas, M.A. and Al-Remawi, M.M.A., Am. J. Appl. Sci., 2012, vol. 9, no. 7, pp. 1091–1100.CrossRefGoogle Scholar
  2. 2.
    Loh Jing, W., Schneider, J., Carter, M.M., et al., J. Pharm. Sci., 2010, vol. 99, no. 10, pp. 4326–4336.CrossRefGoogle Scholar
  3. 3.
    Berthold, A, Cremer, R., and Kreuter, J., J. Controlled Release, 1996, vol. 39, pp. 19–25.CrossRefGoogle Scholar
  4. 4.
    Janes, K.A. and Alonso, M.J., J. Appl. Polym. Sci., 2003, vol. 88, no. 12, pp. 2769–2776.CrossRefGoogle Scholar
  5. 5.
    Fernandes, A.L.P., Morais, W.A., and Santos, A.I.B., Colloid Polym. Sci., 2005, vol. 284, no. 1, pp. 1–9.CrossRefGoogle Scholar
  6. 6.
    Qandil, A.M., Obaidat, A.A., Ali, M.A.M., et al., J. Solution Chem., 2009, vol. 38, pp. 695–712.CrossRefGoogle Scholar
  7. 7.
    Il’ina, A.V., Tkacheva, Yu.V., and Varlamov, V.P., J. Appl. Biochem. Microbiol., 2002, vol. 38, no. 2, pp. 112–115.CrossRefGoogle Scholar
  8. 8.
    Muzzarelli, R.A.A., Tanfani, F., and Emanuelli, M., J. Membr. Sci., 1983, vol. 16, pp. 295–308.CrossRefGoogle Scholar
  9. 9.
    Mullagariev, I.R., Monakov, Yu.B., and Galiaskarova, G.G., Dokl. Chem. Technol., 1995, vol. 345, no. 2, pp. 179–184.Google Scholar
  10. 10.
    Nud’ga, L.A., Plisko, E.A., and Danilov, S.N., Russ. J. Gen. Chem., 1973, vol. 43, no. 12, pp. 2736–2749.Google Scholar
  11. 11.
    Wang, W., Bo, S., Li, S., and Qin, W., Int. J. Biol. Macromol., 1991, vol. 13, pp. 381–387.Google Scholar
  12. 12.
    Mezina, E.A. and Lipatova, I.M., Russ. J. Appl. Chem., 2014, vol. 87, no. 6, pp. 820–824.CrossRefGoogle Scholar
  13. 13.
    Shao, J., Yang, Y, and Zhong, Q., Polym. Degrad. Stab., 2003, vol. 82, no. 3, pp. 395–398.CrossRefGoogle Scholar
  14. 14.
    Fedoseeva, E.N., Smirnova, E.N., Sorokina, M.A., and Pastukhov, M.O., Russ. J. Appl. Chem., 2006, vol. 79, no. 5, pp. 845–849.CrossRefGoogle Scholar
  15. 15.
    Qin, C, Du, Y, Xiao, L., et al., J. Appl. Polym. Sci., 2002, vol. 86, no. 7, pp. 1724–1730.CrossRefGoogle Scholar
  16. 16.
    Kassai, M.R., J. Agric. Food Chem., 2009, vol. 57, pp. 1667–1676.CrossRefGoogle Scholar
  17. 17.
    Trindade Neto, C.G, Fernandes, A.L.P., Santos, A.I.B., Morais, W.A., et al., Polym. Int., 2005, vol. 54, no. 4, pp. 659–666.CrossRefGoogle Scholar
  18. 18.
    Tavaresa, I.S., Caronib, A.L.P.F., Dantas Netob, A.A., et al., Colloids Surf., B, 2012, vol. 90, pp. 254–258.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations