Russian Journal of Applied Chemistry

, Volume 88, Issue 9, pp 1532–1538 | Cite as

Molecular dynamics simulations of the ionic liquid [BMIM][PF6] confined inside silicon slit nanopores

Various Technological Processes
  • 106 Downloads

Abstract

The structures of [BMIM][PF6] ionic liquids (ILs) inside a silicon slit nanopore of width H = 2.0, 3.0, and 4.0 nm at T = 300 K have been studied using classical MD simulations. It is clearly shown that the imidazolium rings of [BMIM] in the “shell” layer prefers to parallel to the surface of the nanopore. Furthermore, both the mass and number densities of the confined ILs are oscillatory, the high density layers are formed in the vicinity of the silicon surface, which indicates the existence of solid-like high density IL layers in the vicinity of silicon slabs. Our results suggest that the strong interactions as well as the pore sizes between the pore walls and the ILs can significantly affect the structure of the confined ILs. It is also clarified, for the effects of pore size, ILs in 2.0 and 3.0 nm pore are significantly large compared with 4.0 nm pore sizes. In addition, quadruple-layer structure of ILs was completely formed in 2.0 nm pore. besides, these layers exhibit peak densities about 1.8 times larger than those in the bulk ILs.

Keywords

Ionic Liquid Silicon Pore Pore Wall Silicon Surface Imidazolium Ring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Welton, T., Chem. Rev.,1999, vol. 99, p. 2071.CrossRefGoogle Scholar
  2. 2.
    Wasserscheid, p. and Keim, W., Angew. Chem. Int. Ed., 2000, vol. 39, p. 3772.CrossRefGoogle Scholar
  3. 3.
    Okubo, K., Shirai, M., and Yokoyama, C., Tetrahedron Lett., 2002, vol. 43, p. 7115.CrossRefGoogle Scholar
  4. 4.
    Holbrey, J.D. and Seddon K.R., Clean. Prod. Processes., 1999, vol. 1, p. 223.Google Scholar
  5. 5.
    Wasserscheid, p. and Welton, T., Ionic Liquids in Synthesis, Wiley-VCH, Weinheim, 2003, p. 103.Google Scholar
  6. 6.
    Fischer, T., Sethi, A., Welton, T., and Woolf, J., Tetrahedron Lett., 1999, vol. 40, p. 793.CrossRefGoogle Scholar
  7. 7.
    Lee, S., Ogawa, A., Kanno, M., Nakamoto, H., Yasuda, T., and Watanabe, M., J. Am. Chem. Soc., 2010, vol. 132, p. 9764.CrossRefGoogle Scholar
  8. 8.
    Nakamoto, H. and Watanabe, M., Chem. Commun., 2007, p. 2539.Google Scholar
  9. 9.
    Sheldon, R., Chem. Commun., 2001, p. 2399.Google Scholar
  10. 10.
    Wang, P., Zakeeruddin, S.M., Moser, J.E., and Gratzel, M., J. Phys. Chem. B, 2003, vol. 107, p. 13280.CrossRefGoogle Scholar
  11. 11.
    Blanchard, L., Hancu, D., Beckman, E.J., and Brennecke, J.F., Nature, 1999, vol. 399, p. 28.CrossRefGoogle Scholar
  12. 12.
    Rajput, N.N., Monk, J., Singh, R., and Hung, F.R., J. Phys. Chem. C, 2012, vol. 116, p. 5169.CrossRefGoogle Scholar
  13. 13.
    Iacob, C., Sangoro, J.R., Kipnusu, W.K., Valiullin, R., Kaerger, J., and Kremer, F., Soft Matter, 2012, vol. 8, p. 289.CrossRefGoogle Scholar
  14. 14.
    Dou, Q., Sha, M.S., Fu, H.Y., and Wu, G.Z., J. Phys. Chem. C, 2011, vol. 115, p. 18946.CrossRefGoogle Scholar
  15. 15.
    Yasuaki O., Tomonori I., Tadahiro M., Hiroyuki, K., Shin’ichi H., and Kosuke S., Electrochem., 2013, vol. 81, p. 808.CrossRefGoogle Scholar
  16. 16.
    Sloutskin, E., Lynden-Bell, R.M., Balasubrama-nian, S., and Deutsch, M., J.Chem. Phys., 2006, vol. 125, p. 174715.CrossRefGoogle Scholar
  17. 17.
    Rajput, N.N., Monk, J., and Hung, F.R., J. Phys. Chem. C, 2014, vol.118, p. 1540.CrossRefGoogle Scholar
  18. 18.
    Yan, T., Li, S., Jiang, W., Gao, X., Xiang, B., and Voth, G.A., J. Phys. Chem. B, 2006,vol. 110, p. 1800.CrossRefGoogle Scholar
  19. 19.
    Li, C. Wang, Y.X., Guo, X.J., Jiang, Z. Jiang, F.L., Zhang, W.L. Zhang, W.F., Fu, H.Y., Xu, H.J., and Wu, G.Z., J. Phys. Chem. C, 2014, vol. 118, p. 3140.CrossRefGoogle Scholar
  20. 20.
    Huang, J. and Yan, B., Korea-Australia Rheol. J., 2014, vol. 26, p. 3.CrossRefGoogle Scholar
  21. 21.
    Chen, S.M., Liu, Y.S., Fu, H.Y., He, Y.X., Li, C., Huang, W., Jiang, Z., and Wu, G.Z., J. Phys. Chem. Lett., 2012, vol. 3, p. 1052.CrossRefGoogle Scholar
  22. 22.
    Gupta, A.K., Verma, Y.L., Singh, R.K., and Chandra, S., J. Phys. Chem. C, 2014, vol. 118, p.1530.CrossRefGoogle Scholar
  23. 23.
    Dong, K., Zhou, G.H., Liu, X.M., Yao, X.Q., Zhang, S.J., and Lyubartsev, A., J. Phys. Chem. C, 2009, vol. 113, p. 10013.CrossRefGoogle Scholar
  24. 24.
    Huang, J.S., Sumpter, B.G., and Meunier, V., Chem.-Eur. J., 2008, vol. 14, p. 6614.CrossRefGoogle Scholar
  25. 25.
    Shim, Y. and Kim, H.J., ACS Nano, 2010, vol. 4, p. 2345.CrossRefGoogle Scholar
  26. 26.
    Coasne, B., Viau, L., and Vioux, A., J. Phys. Chem. Lett., 2011, vol. 2, p.1150.CrossRefGoogle Scholar
  27. 27.
    Wei, S. and Luebke, D.R., Langmuir, 2013, vol. 29, p. 5563.CrossRefGoogle Scholar
  28. 28.
    Singh, R., Rajput, N.N., He, X.X., Franklin, J., Monk, J., and Hung, F.R., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 16090.CrossRefGoogle Scholar
  29. 29.
    Rajput, N.N., Monk, J., and Hung, F.R., J. Phys. Chem. C, 2012, vol. 116, p.14504.CrossRefGoogle Scholar
  30. 30.
    Yang, L., Fishbine, B.H., Migliori, A., and Pratt, L.R., J. Am. Chem. Soc., 2009, vol. 131, p. 12373.CrossRefGoogle Scholar
  31. 31.
    Li, S., Han, K.S., Feng, G., Hagaman, E.W., Vlcek, L., and Cummings, P.T., Langmuir, 2013, vol. 29, p. 9744.CrossRefGoogle Scholar
  32. 32.
    Monk, J., Singh, R., and Hung, F.R., J. Phys. Chem. C, 2011, vol. 115, p. 3034.CrossRefGoogle Scholar
  33. 33.
    Merlet, C., Rotenberg, B.P., Madden, A., Taber-na, P.L., Gogotsi, P.Y., and Salanne, M., Nat. Mater., 2012, vol. 11, p. 306.CrossRefGoogle Scholar
  34. 34.
    Lopes, J.N.C., Deschamps, J., and Padua, A.A.H., J. Phys. Chem. B, 2004, vol. 108, p. 2038.CrossRefGoogle Scholar
  35. 35.
    Sha, M.L., Wu, G.Z., Liu, Y.S., Tang, Z.F., and Fang, H.P., J. Phys. Chem. C, 2009, vol. 113, p. 461.Google Scholar
  36. 36.
    Dou, Q., Sha, M.L., Fu, H.Y., and Wu, G.Z., ChemPhysChem, 2010, vol. 115, p. 2438.CrossRefGoogle Scholar
  37. 37.
    Shim, Y. and Kim H.J., ACS Nano., 2010, vol. 4, p. 2345.CrossRefGoogle Scholar
  38. 38.
    Bingham, R.J. and Ballone, P., J. Phys. Chem. B, 2012, vol. 116, p. 11205.CrossRefGoogle Scholar
  39. 39.
    Sha, M.L., Wu, G.Z., Dou, Q., Tang, Z.F., and Fang, H.P., Langmuir, 2010, vol. 26, p. 12667.CrossRefGoogle Scholar
  40. 40.
    Hess, B., Kutzner, C., Spoel, V.D., and Lindahl, E.J., Chem. Theory Comput., 2008, vol. 4, p. 435..CrossRefGoogle Scholar
  41. 41.
    Chathoth, S.M., Mamontov, E., Fulvio, P.F., Wang, X., Baker, G.A., Dai, S., and Wesolowski, D.J., Europhysics letters (EPL.), 2013, vol. 102, p. 16004.CrossRefGoogle Scholar
  42. 42.
    Pinilla, C., Popolo, M.G.D., Kohanoff, J., and Lynden-Bell, R.M., J. Phys. Chem. B, 2007, vol. 111, p. 4877.CrossRefGoogle Scholar
  43. 43.
    Smith, A.M., Lovelock, K.R.J., Gosvami, N.N., Licence, P., and Dolan, A., J. Phys. Chem. Lett., 2013, vol. 4, p. 378.CrossRefGoogle Scholar
  44. 44.
    Wang, Y.L., Laaksonen, A., and Lu, Z.Y., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 13559.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Xuzhou Institute of TechnologyXuzhouPR China
  2. 2.Department of Chemistry and Chemical EngineeringHefei Normal UniversityHefeiPR China

Personalised recommendations