Advertisement

Russian Journal of Applied Chemistry

, Volume 88, Issue 6, pp 1070–1073 | Cite as

Improving the wear resistance of polytetrafluoroethylene friction surface

  • D. M. Mognonov
  • V. N. Kornopol’tsev
  • O. Zh. Ayurova
  • M. S. Dashitsyrenova
Brief Communications

Abstract

Results obtained in a study of doping of the friction surface of polytetrafluoroethylene with polymerpolymeric mixtures based on aromatic polyheteroarylenes with a structure of a semi-interpenetrating network are analyzed. It is shown that polymer-polymeric mixtures composed on polybenzimidazoles and poly(amino imide) resin are structurally active with respect to polytetrafluoroethylene and substantially improve the tribological and stress-strain properties of composite materials based on this compound.

Keywords

Wear Resistance PTFE Friction Surface Scanning Probe Microscopy DMFA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mashkov, Yu.K., Ovchar, Z.N., Surikov, V.N., and Kalistratova, L.F., Kompozitsionnye materialy na osnove politetraftoretilena. Strukturnaya modifikatsiya (Composite Materials Based on Polytetrafluoroethylene: Structural Modification), Moscow: Mashinostroenie, 2005.Google Scholar
  2. 2.
    Mashkov, Yu.K., Poleshchenko, K.N., Povoroznyuk, S.N., and Orlov, P.V., Trenie i modifitsirovanie materialov tribosistem (Friction and Modification of Materials for Tribosystems), Moscow: Nauka, 2000.Google Scholar
  3. 3.
    Khanin, M.V. and Zaitsev, G.P., Iznashivanie i razrushenie polimernykh kompozitsionnykh materialov (Wear and Disintegration of Composite Materials), Moscow: Khimiya, 1990.Google Scholar
  4. 4.
    Nesterov A.E. and Lebedev, E.V., Russ. Chem. Bull. Int. Ed., 1989, vol. 58, pp. 785–807.Google Scholar
  5. 5.
    Polimernye nanokompozity (Polymeric Nanocomposites), Yu-Wing Mai and Zhong-Zhen Yu., Eds., Moscow: Tekhnosfera, 2011.Google Scholar
  6. 6.
    Newman, S, and Paul, D.R., Polymer Blends, vol. 2: Akademic Press, 1078.Google Scholar
  7. 7.
    Lipatov, Yu.S., Fiziko-khimicheskie osnovy napolneniya polimerov (Physicochemical Foundations of Polymer Filling), Moscow: Khimiya, 1991.Google Scholar
  8. 8.
    Lens kaya, E.V., Zheivot, V.I., and Mognonov, D.M., Russ. Chem. Bull. Int. Ed., 2003, no. 5, pp. 1083–1093.CrossRefGoogle Scholar
  9. 9.
    Mognonov, D.M., Dashitsyrenova, M.S., Mazurevskaya, Z.P., et al., Polym. Sci., Ser. A, 2010, vol. 52, no. 6, pp. 621–627.CrossRefGoogle Scholar
  10. 10.
    Lipatov, Yu.S., Russ. Chem. Rev., 1981, vol. 50, no. 2, pp. 196–207.CrossRefGoogle Scholar
  11. 11.
    Basin, V.E., Adgezionnaya prochnost’ (Adhesion Strength), Moscow: Khimiya, 1981.Google Scholar
  12. 12.
    Bespalov, Yu.A. and Konovalenko, N.G., Mnogokomponentnye sistemy na osnove polimerov (Multicomponent Systems Based on Polymers), Leningrad: Khimiya, 1981.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. M. Mognonov
    • 1
  • V. N. Kornopol’tsev
    • 1
  • O. Zh. Ayurova
    • 1
  • M. S. Dashitsyrenova
    • 1
  1. 1.Baikal Institute of Nature ManagementSiberian Branch, Russian Academy of SciencesUlan-UdeRussia

Personalised recommendations