Russian Journal of Applied Chemistry

, Volume 88, Issue 3, pp 423–429 | Cite as

Fabrication of electrodes modified with poly-3,4-ethylenedioxythiophene-polystyrene sulfonate film and study of their applicability in thiol-sensitive sensors

  • A. A. Shadrina
  • T. G. Nikiforova
  • D. O. Poturai
Applied Electrochemistry and Corrosion Protection of Metals
  • 40 Downloads

Abstract

Drop-by-drop deposition of an aqueous dispersion of poly-3,4-ethylenedioxythiophene-polystyrene sulfonate onto a glassy-carbon disk was used to fabricate electrodes modified with polymeric films of varied thickness. The modified electrodes were characterized by cyclic voltammetry on a rotating disk and electrochemical impedance spectroscopy. The fabricated electrodes were used to study the mechanism of oxidation of thiols in buffer solutions of thiocholine and cysteine by cyclic voltammetry on a rotating electrode, amperometry at a constant potential, and electrochemical impedancemetry. It was demonstrated that electrodes coated with a thin film of poly-3,4-ethylenedioxythiophene-polystyrene sulfonate can be used to determined thiols (thiocholine and cysteine) in buffer solutions by amperometry at a constant potential at concentrations in the range 5 × 10−6–10−4 M and by cyclic voltammetry at higher concentrations of 10−4-6 10−3 M.

Keywords

Cyclic Voltammetry Phosphate Buffer Solution Electrochemical Impedance Spectrum Nyquist Diagram Polystyrene Sulfonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huang, J., Miller, P.F., Mello, J.C., et al., J. Synth. Met., 2003, vol. 139, no. 3, pp. 569–572.CrossRefGoogle Scholar
  2. 2.
    Nardes, A.M., On the Conductivity of PEDOT-PSS Thin Films, Eindhoven: Technische Universiteit Eindhoven, 2007.Google Scholar
  3. 3.
    Tamburri, E., Guglielmotti, V., Orlanducci, S., et al., J. Inorg. Chim. Acta, 2011, vol. 377, no. 1, pp. 170–176.CrossRefGoogle Scholar
  4. 4.
    Istamboulie, G., Sikora, T., Jubete, E., et al., J. Talanta, 2012, vol. 82, no. 3, pp. 957–961.CrossRefGoogle Scholar
  5. 5.
    Vitoratos, E., Sakkopoulos, S., Dalas, E., et al., J. Org. Electron., 2009, vol. 10, no. 1, pp. 61–66.CrossRefGoogle Scholar
  6. 6.
    Tsang, S.W., Tse, S.C., Tong, K.L., et al., J. Org. Electron., 2006, vol. 7, no. 6, pp. 474–479.CrossRefGoogle Scholar
  7. 7.
    Wagner, M., Lisak, G., Ivaska, A., et al., J. Sensors a. Actuators B, 2013, vol. 181, pp. 694–701.CrossRefGoogle Scholar
  8. 8.
    Jeong, J., Woo, S., Park, S. et al. J. Org. Electronics, 2013, vol. 14, no. 11, pp. 2889–2895.CrossRefGoogle Scholar
  9. 9.
    Wang, H., Bo, X., and Guo, L., J. Sensors a. Actuators B, 2014, vol. 192, pp. 181–187.CrossRefGoogle Scholar
  10. 10.
    Pantalei, S., Zampetti, E., Bearzotti, A., et al., J. Sens. Actuators, B, 2013, vol. 179, pp. 87–94.CrossRefGoogle Scholar
  11. 11.
    Seekaew, Y., Lokavee, S., Phokharatkul, D., et al., J. Org. Electron., 2014, vol. 15, no. 11, pp. 2971–2981.CrossRefGoogle Scholar
  12. 12.
    Liu, J., Agarwal, M., and Varahramyan, K., J. Sens. Actuators, B, 2008, vol. 135, no. 1, pp. 195–199.CrossRefGoogle Scholar
  13. 13.
    Arduini, F., Cassisi, A., Amine, A., et al., J. Electroanal. Chem., 2009, vol. 626, nos. 1–2, pp. 66–74.CrossRefGoogle Scholar
  14. 14.
    Malev, V.V. and Levin, O.V., J. Electrochim. Acta, 2012, vol. 80, pp. 426–431.CrossRefGoogle Scholar
  15. 15.
    Oliveira, F.C.M. and Serrano, S.H.P., J. Electrochim. Acta, 2014, vol. 125, pp. 566–572.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. A. Shadrina
    • 1
  • T. G. Nikiforova
    • 1
  • D. O. Poturai
    • 1
  1. 1.Institute of ChemistrySt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia

Personalised recommendations