Advertisement

Russian Journal of Applied Chemistry

, Volume 88, Issue 2, pp 343–349 | Cite as

Mechanism of ultrasonic-assisted oil-conjugated reaction using solid nickel catalyst

  • Qiqi Deng
  • Rifu Yang
  • Jie Yan
Various Technologies
  • 36 Downloads

Abstract

The mechanism of ultrasonic-assisted oil-conjugated reaction with solid catalyst was investigated here. Experiment results illustrated that the linoleic acid molecule could not spontaneously convert itself into the end product, conjugated linoleic acid, in the absence of catalyst due to the higher activation energy required for this process. The addition of Ni powder to the oil ensured that the course of reaction completely proceeded, originating from the ability of Ni catalyst to adsorb H radicals on its surface to generate a stable and longer-lived substance, Ni[H·] n particles. Ultrasonic irradiation contributed to enhance the decomposition reaction of linoleic acid to release larger numbers of H radicals, and boost the effective collisions between Ni[H·] n particle and the intermediate with conjugated double bonds. Furthermore, when the acoustic cavitation arose, the reaction between H radicals and intermediates merely occurred in the gas-liquid interface of cavitation bubbles.

Keywords

Linoleic Acid Cavitation Jatropha Cavitation Bubble Catalyst Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, S.-L., Dong, X.-Y., Wei, F., Wang, X., Lv, X., Zhong, J., Wu, L., Quek, S.-Y. and Chen, H., Ultrason. Sonochem., 2015, vol. 23, p. 100.CrossRefGoogle Scholar
  2. 2.
    Manickam, S., Arigela, V.N.D., and Gogate, P.R., Fuel Process. Technol., 2014, vol. 128, p. 388.CrossRefGoogle Scholar
  3. 3.
    Morsali, A., Monfared, H.H., Morsali, A., and Janiak, C., Ultrason. Sonochem., 2015, vol. 23, p. 208.CrossRefGoogle Scholar
  4. 4.
    Rouhani, M., Ramazani, A., and Joo, S.W., Ultrason. Sonochem., 2015, vol. 22, p. 391.CrossRefGoogle Scholar
  5. 5.
    Didenko, Y.T., McNamara, W.B. and Suslick, K.S., J. Am. Chem. Soc., 1999, vol. 121, p. 5817.CrossRefGoogle Scholar
  6. 6.
    Drijvers, D., De Baets, R., De Visscher, A., and Van Langenhove, H., Ultrason. Sonochem., 1996, vol. 3, p. S83.CrossRefGoogle Scholar
  7. 7.
    Gogate, P.R. and Kabadi, A.M., Biochem. Eng. J., 2009, vol. 44, p. 60.CrossRefGoogle Scholar
  8. 8.
    Prevenslik, T.V., Ultrasonics, 2003, vol. 41, p. 313.CrossRefGoogle Scholar
  9. 9.
    Rooze, J., Rebrov, E.V., Schouten, J.C., and Keurentjes, J.T.F., Ultrason. Sonochem., 2013, vol. 20, p. 1.CrossRefGoogle Scholar
  10. 10.
    Ashokkumar, M., Ultrason. Sonochem., 2007, vol. 18, p. 864.CrossRefGoogle Scholar
  11. 11.
    Chiha, M., Merouani, S., Hamdaoui, O., Baup, S., Gondrexon, N., and Petrier, C., Ultrason. Sonochem., 2010, vol. 17, p. 773.CrossRefGoogle Scholar
  12. 12.
    Gogate, P.R., Chem. Eng. Process., 2008, vol. 47, p. 515.CrossRefGoogle Scholar
  13. 13.
    Kubo, M., Matsuoka, K., Takahashi, A., Shibasaki-Kitakawa, N., and Yonemoto, T., Ultrason. Sonochem., 2005, vol. 12, p. 263.CrossRefGoogle Scholar
  14. 14.
    Parkar, P.A., Choudhary, H.A., and Moholkar, V.S., Chem. Eng. J., 2012, vol. 187, p. 248.CrossRefGoogle Scholar
  15. 15.
    Ebrahiminia, A., Mokhtari-Dizaji, M., and Toliyat, T., Ultrason. Sonochem., 2013, vol. 20, p. 366.CrossRefGoogle Scholar
  16. 16.
    Neuenschwander, U., Neuenschwander, J., and Hermans, I., Ultrason. Sonochem., 2012, vol. 19, p. 1011.CrossRefGoogle Scholar
  17. 17.
    Price, G.J., Duck, F.A., Digby, M., Holland, W., and Berryman, T., Ultrason. Sonochem., 1997, vol. 4, p. 165.CrossRefGoogle Scholar
  18. 18.
    Somaglino, L., Bouchoux, G., Mestas, J.-L., and Lafon, C., Ultrason. Sonochem., 2011, vol. 18, p. 577.CrossRefGoogle Scholar
  19. 19.
    Zhang, X., Fu, Y., Li, Z., and Zhao, Z., Chinese J. Chem. Eng., 2008, vol. 16, p. 547.CrossRefGoogle Scholar
  20. 20.
    Deng, X., Fang, Z., Liu, Y.-H., and Yu, C.-L., Energy, 2011, vol. 36, p. 777.CrossRefGoogle Scholar
  21. 21.
    Kumar, D., Kumar, G., Poonam, and Singh, C.P., Ultrason. Sonochem., 2010, vol. 17, p. 839.CrossRefGoogle Scholar
  22. 22.
    Mootabadi, H., Salamatinia, B., Bhatia, S., and Abdullah, A.Z., Fuel, 2010, vol. 89, p. 1818.CrossRefGoogle Scholar
  23. 23.
    Lee, H.V., Yunus, R., Juan, J.C., and Taufiq-Yap, Y.H., Fuel Process. Technol., 2011, vol. 92, p. 2420.CrossRefGoogle Scholar
  24. 24.
    Salamatinia, B., Mootabadi, H., Bhatia, S., and Abdullah, A.Z., Fuel Process. Technol., 2010, vol. 91, p. 441.CrossRefGoogle Scholar
  25. 25.
    Yang, R.-F., Deng, Q.-Q., and Yan, J., Asian J. Chem., 2013, vol. 25, p. 6316.Google Scholar
  26. 26.
    Okitsu, K., Iwasaki, K., Yobiko, Y., Bandow, H., Nishimura, R., and Maeda, Y., Ultrason. Sonochem., 2005, vol. 12, p. 255.CrossRefGoogle Scholar
  27. 27.
    Pogocki, D. and Schoneich, C., Free Radical Bio. Med., 2001, vol. 31, p. 98.CrossRefGoogle Scholar
  28. 28.
    Zheng, W., Maurin, M., and Tarr, M.A., Ultrason. Sonochem., 2005, vol. 12, p. 313.CrossRefGoogle Scholar
  29. 29.
    Taghavi, F., Falamaki, C., Shabanov, A., Seyyedi, M., and Zare, M., Appl. Catal. A-Gen., 2013, vol. 453, p. 334.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Electrical EngineeringYangjiang Vocational and Technical CollegeYangjiangChina
  2. 2.College of ScienceSouth China University of TechnologyGuangzhouChina
  3. 3.College of Chemistry and Chemical EngineeringZhongkai University of Agriculture and EngineeringGuangzhouChina

Personalised recommendations