Russian Journal of Applied Chemistry

, Volume 88, Issue 1, pp 18–26 | Cite as

Sr-anorthite glass ceramic with enhanced crack resistance, reinforced with silicon nitride particles

  • A. S. Chainikova
  • L. A. Orlova
  • N. V. Popovich
  • D. V. Grashchenkov
  • Yu. E. Lebedeva
  • S. S. Solntsev
Inorganic Synthesis and Industrial Inorganic Chemistry
  • 40 Downloads

Abstract

It is demonstrated that composite materials based on Sr-anorthite glass ceramic can be synthesized with finely dispersed α-Si3N4 and β-Si3N4 powders introduced as fillers. A study of the influence exerted by the polymorphic forms of fillers, their morphology, dispersity, and concentration and also by the nature of the matrix on the synthesis, structure, and properties of the composites demonstrated that the mechanism and temperature range of sintering in syntheses of materials are determined by the nature of the matrix and the degree of densification and the structure of the composite depend on the concentration, dispersity, and shape of filler particles, their phase composition, and wettability of the glass-phase matrix. In syntheses of glass-crystalline composites by the hot compaction method, raising the filler content from 10 to 70 vol % leads to a substantial decrease in the density of the materials (by 20%); the maximum content of the filler should not exceed 30 vol %. The use of both α-Si3N4 and β-Si3N4 in an amount of 30% made it possible to raise the critical stress intensity coefficient of the strontium-aluminosilicate matrix by more than a factor of 2. A study of the thermal properties of the composites demonstrated that the glass-crystalline matrix can protect nonoxide fillers from oxidation by atmospheric oxygen at elevated temperatures, with the oxidation onset temperature increased by 300°. The developed class of composites is promising for application in airspace technology, chemical industry, and motor-vehicle construction.

Keywords

Glassy Phase Critical Stress Intensity Factor Spodumene Aluminosilicate Glass Nonoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sarkisov, P.D., Napravlennaya kristallizatsiya stekla — osnova polucheniya mnogofunktsional’nykh steklokristallicheskikh materialov (Directional Crystallization of Glass as a Basis for Obtaining Multifunctional Glass-Crystalline Materials), Moscow: Ros. Khim. Tekhnol. Univ. im. D.I. Mendeleeva, 1997.Google Scholar
  2. 2.
    Beall, G.H., J. Eur. Ceram. Soc., 2009, no. 29, pp. 1211–1219.Google Scholar
  3. 3.
    US Patent no. 11895847 (publ. 2009).Google Scholar
  4. 4.
    Kablov, E.N., Grashchenkov, D.V., and Uvarova, N.E., Aviats. Mater. Tekhnol., 2011, no. 2, pp. 22–25.Google Scholar
  5. 5.
    Kharitonov, D.V., Aviats. Mater. Tekhnol., 2012, no. 3, pp. 19–25.Google Scholar
  6. 6.
    Sung, Y.M. and Kim, S., J. Mater. Sci., 2000, no. 35, pp. 4293–4299.Google Scholar
  7. 7.
    Bansal, N.P. and Setlock, J.A., Composites: Part A, 2001, no. 32, pp. 1021–1029.Google Scholar
  8. 8.
    Sung, Y.M., J. Mater. Sci., 2002, vol. 37, no. 4, pp. 699–703.CrossRefGoogle Scholar
  9. 9.
    Roether, J.A. and Boccaccini, A.R., Handbook of Ceramic Composites, Boston: Kluwer Acad. Publ., 2005, pp. 485–511.CrossRefGoogle Scholar
  10. 10.
    Boccaccini, A.R., Handbook of Ceramic Composites, Boston: Kluwer Acad. Publ., 2005, pp. 461–485.CrossRefGoogle Scholar
  11. 11.
    Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., et al., Steklo Keram., 2012, no. 4, pp. 7–11.Google Scholar
  12. 12.
    Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., and Solntsev, S.St., Ros. Khim. Zh., 2010, vol. 54, no. 1, pp. 20–24.Google Scholar
  13. 13.
    Shchetanov, B.V., Balinova, Yu.A., Lyulyukina, G.Yu., and Solov’eva, E.P., Aviats. Mater. Tekhnol., 2012, no. 1, pp. 13–18.Google Scholar
  14. 14.
    Kablov, E.N., Shchetanov, B.V., Ivakhnenko, Yu.A., and Balinova, Yu.A., Trudy VIAM, 2013, no. 2, St. 05 (viamworks.ru).Google Scholar
  15. 15.
    Shchetanov, B.V., Kuptsov, R.S., and Svistunov, V.I., Trudy VIAM, 2013, no. 4, St. 01 (viam-works.ru).Google Scholar
  16. 16.
    Chainikova, A.S., Orlova, L.A., Popovich, N.V., et al., Aviats. Mater. Tekhnol., 2014, no. 3, pp. 45–54.Google Scholar
  17. 17.
    Ye, F., Liu, L., Zhang, J., and Meng, Q., Compos. Sci. Technol., 2008, no. 68, pp. 1073–1079.Google Scholar
  18. 18.
    Ye, F., Liu, L., Zhang, J., et al., Compos. Sci. Technol. 2005, no. 65, pp. 2233–2239.Google Scholar
  19. 19.
    RF Patent no. 2440936, 2012.Google Scholar
  20. 20.
    Sarkisov, P.D., Orlova, L.A., Popovich, N.V., et al., Glass Ceram., 2013, vol. 69, nos. 9–10, pp. 306–312.CrossRefGoogle Scholar
  21. 21.
    Pierson, H.O., Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications, New Jersey: Noyes Publ., 1996.Google Scholar
  22. 22.
    Chainikova, A.S., Orlova, L.A., Popovich, N.V., et al., Inorg. Synth. Industrial Inorg. Chem., 2014, no. 9, pp. 1201–1209.Google Scholar
  23. 23.
    Matthews, F.L. and Rawlings, Rees D., Composite Materials: Engineering and Science, Cambridge: CRC Press, 1999.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. S. Chainikova
    • 1
    • 2
  • L. A. Orlova
    • 2
  • N. V. Popovich
    • 2
  • D. V. Grashchenkov
    • 1
  • Yu. E. Lebedeva
    • 1
  • S. S. Solntsev
    • 1
  1. 1.All-Russian Scientific Research Institute of Aviation MaterialsMoscowRussia
  2. 2.Mendeleev University of Chemical TechnologyMoscowRussia

Personalised recommendations