Seasonal Dynamics of Heavy Metal and Arsenic Content of Water and Sediments of the Srepok River (Vietnam)

Abstract

Accumulation of heavy metals (Fe, Cu, Zn, Cd, Pb) and arsenic in water and bottom sediments of the Srepok River in rainy and dry seasons has been assessed. Significant seasonal variations in the concentration of elements in water have been found. The Fe, Cu, Zn, As, and Pb content of sediments did not depend on the season, and the concentration of Cd was higher in the rainy season. At certain periods of time, the concentrations of these elements in river water exceeded those recommended by the national technical regulations of Vietnam: Fe, 2.3–9.5 times; Cu, 1.2–2.8 times; Zn, 1.2–4.5 times; Cd, 1.7–6.8 times; Pb, 1.1–17 times; and As, 1.1–3.7 times. The concentrations of all heavy metals and arsenic in the river water and bottom sediments of industrial zones tended to increase. The results showed, the examined elements can be divided into groups where their concentrations are closely interrelated. These groups are composed of Fe, Cu, Zn, and Pb in the river water, and of Cu, Zn, As, and Pb in sediments. The obtained data prove the necessity of monitoring the levels of heavy metals and arsenic in river water and bottom sediments of industrial zones.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1

    Vietnam National Environmental Report 2010. http://vea.gov.vn/vn/hientrangmoitruong/baocaomtquocgia/Pages/

  2. 2

    Action Planto Combat Climate Change in Dak Lak Province Together with a Short Project Report Climate Change Assessment and Scenario Development. Dak Lak Provincial People’s Committee. Decision no. 2309/QD-UBND of August 27, 2015, Clim. Change, 2015, pp. 43‒54.

  3. 3

    Baeva, Yu.I. and Chernykh, N.A., Sudebnaya ekologiya: uchebnoe posobie v 6 tomakh. Tom II. Issledovanie ekologicheskogo sostoyaniya vodnykh obʼʼektov (Forensic Ecology: A Tutorial. Volume II: Investigation of the Ecological State of Water Bodies), Moscow: Ross. Univ. Druzhby Narodov, 2018.

  4. 4

    Venicyanov, E.V., Miroshnichenko, S.A., Lepikhin, A.P., and Gubernatorova, T.N., Vodn. Khoz. Rossii: Probl., Tekhnol., Upravl., 2015, no. 3, p. 50.

    Google Scholar 

  5. 5

    Davydova, O.A., Klimov, E.S., Vaganova, E.S., and Vaganov, A.S., Vliyanie fiziko-khimicheskikh faktorov na soderzhanie tyazhelykh metallov v vodnykh ekosistemakh (Influence of Physicochemical Factors on the Heavy Metal Content of Aquatic Ecosystems), Ul’yanovsk: Ulʼyanovsk. Gos. Tekh. Univ., 2014.

  6. 6

    Danilov-Danil’yan, V.I., Vodnye resursy mira i perspektivy vodokhozyaistvennogo kompleksa Rossii (World Water Resources and Prospects of Waterworks Facilities in Russia), Moscow: Tipografiya LEVKO, 2009.

  7. 7

    Dzhamalov, R.G., Medovar, Yu.A., and Yushmanov, I.O., Analiz, prognoz i upravlenie prirodnymi riskami v sovremennom mire (GEORISK-2015) [Analysis, Prognosis, and Management of Natural Risks in the Modern World (GEORISK-2015), Moscow, 2015, p. 176.

  8. 8

    Nurtaeva, K.S. and Tarakova, K.A., Mezhdunar. Zh. Eksp. Obraz., 2016, no. 6, p. 223.

    Google Scholar 

  9. 9

    Chernykh, N.A. and Sidorenko, S.N., Ekologicheskii monitoring ekotoksikantov v biosfere (Environmental Monitoring of Pollutants in the Biosphere), Moscow: Ross. Univ. Druzhby Narodov, 2003.

  10. 10

    Bui, Thi. Nga. and Nguyen, Van. Tho., Tạp chí Khoa học., 2009, vol. 11, p. 356.

    Google Scholar 

  11. 11

    Ferati, F., Kerolli-Mustafa, M., and Kraja-Ylli, A., Environ. Monit. and Assess., 2015, vol. 187, p. 338. https://doi.org/10.1007/s10661-015-4524-4

    CAS  Article  Google Scholar 

  12. 12

    Karadede-Akin, H. and Unlu, E., Environ. Monit. Assess., 2007, vol. 131, p. 323. https://doi.org/10.1007/s10661-006-9478-0

    CAS  Article  PubMed  Google Scholar 

  13. 13

    MacDonald, D.D., Ingersoll, C.G., and Berger, T.A., Arch. Environ. Contam. Toxicol., 2000, vol. 39, p. 20. https://doi.org/10.1007/s002440010075

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Salati, S. and Moore, F., Environ. Monit. Assess., 2010, vol. 164, p. 677. https://doi.org/10.1007/s10661-009-0920-y

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Chernykh, N.A., Cuong, N.T., Chan, H.K., Baeva, Y.I., and Grachev, V.A., J. Pharm. Sci. Res., 2018, vol. 10, no. 4, p. 800.

    CAS  Google Scholar 

  16. 16

    Baeva, Y.I., Chernykh, N.A., Kurganova, I.N., Lopes de Gerenyu, V.O., and Ovsepyan, L.A., Abstracts of Papers, 19th Int. Multidisciplinary Scientific Geoconfer ence (SGEM 2019), 2019, p. 483. https://doi.org/10.5593/sgem2019/3.2/S13.063

  17. 17

    Kikuchi, T. and Furuichi, T., Huynh Trung Hai, and Tanaka S., Bull. Environ. Contam. Toxicol., 2009, vol. 83, p. 575. https://doi.org/10.1007/s00128-009-9815-4

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Simeonov, V., Stratis, J.A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., and Kouimtzis, Th., Water Res., 2003, vol. 37, p. 4119. https://doi.org/10.1016/S0043-1354(03)00398-1

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Vega, M., Pardo, R., Barrado, E., and Deban, L., Water Res., 1998, vol. 32, no. 12, p. 3581.

    CAS  Article  Google Scholar 

  20. 20

    Nguyen, T.T., Yoneda, M., Shimada, Y., and Matsui, Y., Environ. Earth Sci., 2015, vol. 73, no. 7, p. 3925. https://doi.org/10.1007/s12665-014-3678-7

    CAS  Article  Google Scholar 

  21. 21

    Gaur, V.K., Sanjay, K.G., Pandey, S.D., Gopal, K., and Misra, V., Environ. Monit. Assess., 2005, vol. 102, p. 419. https://doi.org/10.1007/s10661-005-6395-6

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Kumar, R.N., Solanki, R., and Kumar, J.I.N., Environ. Monit. Assess., 2013, vol. 185, p. 359. https://doi.org/10.1007/s10661-012-2558-4

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Manoj, K., Padhy, P.K., and Chaudhury, S., Bull. Environ., Pharmacol. Life Sci., 2012, vol. 1, no. 10, p. 7.

    Google Scholar 

  24. 24

    Kucuksezgin, F., Uluturhan, E., and Batki, H., Environ. Monit. Assess., 2008, vol. 141, p. 213. https://doi.org/10.1007/s10661-007-9889-6

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Nguyen, T.L.H., Ohtsubo, M., Li, L.Y., and Higashi, T., J. Fac. Agric., Kyushu Univ., 2007, vol. 52, no. 1, p. 141.

    CAS  Article  Google Scholar 

  26. 26

    Nguyen, T.L.H., Ohtsubo, M., Li, L.Y., Higashi, T., Nguyen, T., Yoneda, M., Ikegami, M., and Takakura, M., Environ. Monit. Assess., 2013, vol. 185, p. 8065. https://doi.org/10.1007/s10661-013-3155-x

    CAS  Article  Google Scholar 

  27. 27

    Huong, N.T.L., Ohtsubo, M., Higashi, T., and Kanayama, M., Soil Sediment Contam., 2012, vol. 21, p. 364. https://doi.org/10.1080/15320383.2012.649379

    CAS  Article  Google Scholar 

  28. 28

    Nguyen, T.L.H., Kanayama, M., Higashi, T., Le, V.C., Doan, T.H., and Chu, A.D., J. Fac. Agric., Kyushu Univ., 2014, vol. 59, no. 1, p. 143.

    CAS  Article  Google Scholar 

  29. 29

    Borrego, J., Morales, J.A., Torre, M.L., and Grande, J.A., Environ. Geol., 2002, vol. 41, p. 785. https://doi.org/10.1007/s00254-001-0445-3

    CAS  Article  Google Scholar 

  30. 30

    Sanchiz, C., García-Carrascosa, A.M., and Pastor, A., Marine Ecol., 2000, vol. 21, no. 1, p. 1. https://doi.org/10.1046/j.1439-0485.2000.00642.x

    CAS  Article  Google Scholar 

  31. 31

    Hejabi, A.T., Basavarajappa, H.T., Carbassi, A.R., and Monavari, S.M., Environ. Monit. Assess., 2011, vol. 182, p. 1. https://doi.org/10.1007/s10661-010-1854-0

    CAS  Article  Google Scholar 

  32. 32

    Raju, K.V., Somashekar, R.K., and Prakash, K.L., Environ. Monit. Assess., 2012, vol. 184, p. 361. https://doi.org/10.1007/s10661-011-1973-2

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Baeva.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chernykh, N.A., Baeva, Y.I. & Cuong, N.T. Seasonal Dynamics of Heavy Metal and Arsenic Content of Water and Sediments of the Srepok River (Vietnam). Russ J Gen Chem 90, 2598–2605 (2020). https://doi.org/10.1134/S1070363220130113

Download citation

Keywords:

  • Vietnam
  • Srepok river
  • industrial zones
  • river water
  • sediments
  • heavy metals
  • arsenic
  • concentration levels