Content of Rare-Earth Elements in Soils of Technogeochemical Anomalies

Abstract

This review presents geochemical and medical-ecological information on the content, distribution, and accumulation of rare-earth elements in soils of technogeochemical anomalies. The significance of V.I. Vernadskii’s ideas in development of the theory of the chemical elements atoms migration in the biosphere is demonstrated. Specific features of the atomic structure of rare-earth elements, determining their chemical and toxic properties, are presented. Natural mineral concentrators of scandium, ytterbium, and the lanthanide group are considered in detail. Distribution patterns for these chemical elements in mining deposits and soils of technogenic impact zones are analyzed. Characteristic reactions of rare-earth elements on the soil-formation process and their interaction with various soil compounds (fractionation, complexation) are presented. Characteristics of the Cherepovets technogeochemical anomaly, contaminated with barium, lanthanum, and cerium are given in more detail. The problem of soil profile contamination in tailings dumping sites is discussed. The issue of biological fixation of rare-earth elements by plants and main directions of their migration in the natural environment are discussed. It is shown that soils of urbanized territories are a depositing medium for such elements and carry a great environmental and technogenic burden. Data are provided concerning ways to reduce the toxic effects of rare-earth elements on the environment and measures to control soil pollution in order to prevent the occurrence of environmentally caused diseases in humans.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. 1

    Dokuchaev, V.V., Russkii chernozem (Russian Black Soils), Moscow: OGIZ-SEL’KHOZGIZ, 1936.

  2. 2

    Vernadskii, V.I., Khimicheskoye stroeniye biosfery zemli i ee okruzheniya (Chemical Structure of the Earth’s Biosphere and Its Environment), Moscow: Nauka, 2001.

  3. 3

    Dragan, N.A., Uch. Zap. Tavrich. Nats. Univ. im. V.I. Vernadskogo, 2013, vol. 26 (65), no. 3, pp. 273–279.

    Google Scholar 

  4. 4

    Zamotaev, I.V., Ivanov, I.V., Mikheev, P.V., and Belobrov, V.P., Pochvoved., 2017, no. 3, pp. 370–384.

    Google Scholar 

  5. 5

    Koval’, E.V., Nauka i Sovremennost’, 2016, no. 44, pp. 209–213.

    Google Scholar 

  6. 6

    Nekrasova, O.A. and Dergacheva, M.I., Vest. Tomsk. Gos. Univ., Ser. Biologiya, 2013, no. 4 (24), pp. 36–46.

    Google Scholar 

  7. 7

    Mihajlovic, J. and Rinklebe, J., Chemosphere, 2018, vol. 205, pp. 514–523. https://doi.org/10.1016/j.chemosphere.2018.04.059

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Atibu, E.K., Lacroix, P., Sivalingam, P., Ray, N., Giuliani, G., Mulaji, C.K., Otamonga, J.P., Mpiana, P.T., Slaveykova, V.I., and Poté, J., Chemosphere, 2018, vol. 191, pp. 1008–1020. https://doi.org/10.1016/j.chemosphere.2017.10.052

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Gałuszka, A., Migaszewski, Z.M., Dołęgowska, S., and Michalik, A., Sci. Total Environ., 2018, vol. 639, pp. 397–405. https://doi.org/10.1016/j.scitotenv.2018.05.174

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Znamenskii, S.E., Litosfera, 2017, no. 1, pp. 135–141.

    Google Scholar 

  11. 11

    Barkov, A.Yu. and Nikiforov, A.A., Vest. Voronezh. Gos. Univ., Ser. Geologiya, 2015, no. 3, pp. 50–58.

    Google Scholar 

  12. 12

    Savichev, A.T. and Vodyanitskii, Yu.N., Pochvoved., 2011, no. 4, pp. 424–432.

    Google Scholar 

  13. 13

    Koroteev, V.A., Ogorodnikov, V.N., Polenov, Yu.A., and Savichev, A.N., Izv. Ural. Gos. Gorn. Univ., 2016, no. 3 (43), pp. 13–19.

    Google Scholar 

  14. 14

    Kuz’min, V.I., Kuz’mina, V.N., Kuznetsov, P.N., and Kolesnikova, S.M, Khim. Tverd. Tela, 2016, no. 2, pp. 51–57.

    Google Scholar 

  15. 15

    Yurgenson, G.A. and Yakovleva, V.I., Vest. Zabaikal. Gos. Univ., 2017, vol. 23, no. 12, pp. 69–76.

    Google Scholar 

  16. 16

    Felitsin, S.B. and Bogomolov, E.S., Litolog. Polez. Iskop., 2016, no. 2, pp. 118–128.

    Google Scholar 

  17. 17

    Li, J., Sun, C., Zheng, L., Yin, X., Chen, J., and Jiang, F., Mar. Pollut. Bull., 2017, vol. 114, no. 2, pp. 1103–1109. https://doi.org/10.1016/j.marpolbul.2016.10.016

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Vodyanitskii, Yu.N., Savichev, A.T., Vasiliev, A.A., Lobanova, E.S., Chashchin, A.N., and Prokopovich, E.V., Pochvoved., 2010, no. 7, pp. 879–890.

    Google Scholar 

  19. 19

    Bryanin, S.V. and Sorokina, O.A., Tikhookean. Geol., 2015, vol. 34, no. 3, pp. 104–111.

    Google Scholar 

  20. 20

    Samonova, O.A., Vest. Mosk. Gos. Univ., Ser. 5: Geografiya, 2013, no. 3, pp. 73–79.

    Google Scholar 

  21. 21

    Vodyanitskii, Yu.N., Goryachkin, S.V., and Savichev, A.T., Pochvoved., 2011, no. 5, pp. 546–555.

    Google Scholar 

  22. 22

    Vodyanitskii, Yu.N., Pochvoved., 2012, no. 1, pp. 69–81.

    Google Scholar 

  23. 23

    Guénet, H., Demangeat, E., Davranche, M., Vantelon, D., Pierson-Wickmann, A.C., Jardé, E., Bouhnik-Le, Coz, M., Lotfi, E., Dia, A., and Jestin, J., Sci. Total. Environ., 2018, vols. 631‒632, pp. 580–588. https://doi.org/10.1016/j.scitotenv.2018.03.005

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Kozhevnikova, N.M., Agrokhim., 2013, no. 6, pp. 54–59.

    Google Scholar 

  25. 25

    Mihajlovic, J., Stärk, H.J., and Rinklebe, J., Chemosphere, 2017, vol. 181, pp. 313–319. https://doi.org/10.1016/j.chemosphere.2017.04.036

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Perelomov, L.V., Agrokhim., 2007, no. 11, pp. 85–96.

    Google Scholar 

  27. 27

    Yuan, M., Liu, C., Liu, W.S., Guo, M.N., Morel, J.L., Huot, H., Yu, H.J., Tang, Y.T., and Qiu, R.L., Int. J. Phytoremed., 2018, vol. 20, no. 5, pp. 415–423. https://doi.org/10.1080/15226514.2017.1365336

    CAS  Article  Google Scholar 

  28. 28

    Censi, P., Saiano, F., Pisciotta, A., and Tuzzolino, N., Sci. Total. Environ., 2014, vol. 473–474, pp. 597–608. https://doi.org/10.1016/j.scitotenv.2013.12.073

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Ladonin, D.V., Pochvoved., 2017, no. 6, pp. 680–689.

    Google Scholar 

  30. 30

    Vodyanitskii, Yu.N., Kosareva, N.V., and Savichev, A.T., Byull. Pochv. Inst. Im. V.V. Dokuchaeva, 2010, no. 65, pp. 75–86.

    Google Scholar 

  31. 31

    Rasskazov, I.Yu., Grekhnev, N.I., and Alexandrova, T.N., Tikhookean. Geol., 2014, vol. 33, no. 1, pp. 102–114.

  32. 32

    Dabakh, E.V., Proc. XV All-Russian Scient. and Pract. Conf. with Intern. Participation: Biodiagnostics of the State of Natural and Natural-Technical Systems, Kirov, 2017, pp. 137–140.

  33. 33

    Karmyshova, U.Zh. and Dzhenbaev, B.M., Universum: Khim. Biol. Elektron. Nauch. Zh., 2016. no. 5 (23), pp. 8–18.

    Google Scholar 

  34. 34

    Asylbaev, I.G. and Khabirov, I.K., Vest. Ural. Gos. Sel’khoz. Akad., 2013, no. 2 (22), pp. 11–16.

    Google Scholar 

  35. 35

    Doroshkevich, S.G. and Smirnova, O.K., Proc. VI All-Russian Symposium with Intern. Participation and XIII All-Russian Readings in Memory of Acad. A.E. Fersman: Mineralogy and Geochemistry of the Mining Areas Landscape, Rational Use of Natural Resources, Modern Mineral Formation, Chita, 2016, pp. 107–113.

  36. 36

    Radomskaya, V.I., Radomsky, S.M., Pavlova, L.M., and Kulik, E.N., Geoekol. Inzh. Geol. Gidrogeol. Geokriol., 2017, no. 1, pp. 15–27.

    Google Scholar 

  37. 37

    Migaszewski, Z.M., Gałuszka, A., and Dołęgowska, S., Environ. Sci. Pollut. Res. Int., 2016, vol. 23, no. 24, pp. 24943‒24959. https://doi.org/10.1007/s11356-016-7713-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Khan, A.M., Behkami, S., Yusoff, I., Md Zain, S.B., Bakar, N.K.A., Bakar, A.F.A., and Alias, Y., Chemosphere, 2017, vol. 184, pp. 673–678. https://doi.org/10.1016/j.chemosphere.2017.06.032

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Abdushukurov, D.A., Kobuliev, Z.V., and Mamadaliev, B.N., Nauka i Novye Tekhnol., 2014, no. 6, pp. 29–33.

    Google Scholar 

  40. 40

    Nikitskaya, K.E., Vodnye resursy: novye vyzovy i puti resheniya (Water Resources: New Challenges and Solutions), Novocherkassk, 2017, pp. 294–398.

  41. 41

    Kozhevnikova, N.M. and Ermakova, E.P., Vest. Severo-Vostochnogo Nauch. Tsentra DVO RAN, 2010, no. 3, pp. 95–98.

    Google Scholar 

  42. 42

    Abasheeva, N.E., Soldatova, Z.A., and Kozhevnikova, N.M., Vest. Buryatskoi Gos. Sel’skokhoz. Akad. im. V.R. Filippova, 2013, no. 4 (33), pp. 30–35.

    Google Scholar 

  43. 43

    Zhornyak, L.V. and Yazikov, E.G., Izv. Vyssh. Ucheb. Zaved., Geologiya i Razvedka, 2008, no. 4, pp. 82–83.

    Google Scholar 

  44. 44

    Fastovets, I.A., Kotelnikova, A.D., Rogova, O.B., Sushkov, N.I., Volkov, D.S., Proskurnin, M.A., and Pashkevich, E.B., Byull. Pochv. Inst. Im. V.V. Dokuchaeva, 2017, vol. 88, pp. 27–46.

    Google Scholar 

  45. 45

    Ramírez-Olvera, S.M., Trejo-Téllez, L.I., García-Morales, S., Pérez-Sato, J.A., and Gómez-Merino, F.C., PLoS One, 2018, vol. 13, no. 3, pp. 1–19. https://doi.org/10.1371/journal.pone.0194691

    CAS  Article  Google Scholar 

  46. 46

    Fiket, Ž., Medunić, G., Furdek, Turk, M., Ivanić, M., and Kniewald, G., Chemosphere, 2017, vol. 179, pp. 92–100. https://doi.org/10.1016/j.chemosphere.2017.03.089

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Turra, C., Int. J. Environ. Health. Res., 2018, vol. 28, no. 1. pp. 23–42. https://doi.org/10.1080/09603123.2017.1415307

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Christensen, E.R., Steinnes, E., and Eggen, O.A., Sci. Total. Environ., 2018, vols. 613‒614, pp. 371–378. https://doi.org/10.1016/j.scitotenv.2017.09.094

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Artemenkov, A.A., Osnovy toksikologii (Fundamentals of Toxicology), Cherepovets: Izd. Dom Print, 2009.

  50. 50

    Tang, J., Qiao, J., Xue, Q., Liu, F., Chen, H., and Zhang, G., Chemosphere, 2018, vol. 199, pp. 160–167. https://doi.org/10.1016/j.chemosphere.2018.01.170

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Vodyanitskii, Yu.N., Byull. Pochv. Inst. im. V.V. Dokuchaeva, 2010, no. 66, pp. 64–82.

    Google Scholar 

  52. 52

    Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., and Sanganyado, E., Sci. Total. Environ., 2018, vol. 636, pp. 299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Vasiliev, A.A. and Lobanova, E.S., Perm. Agrar. Vest., 2015, no. 1 (9), pp. 34–49.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Artemenkov.

Ethics declarations

No conflict of interest was declared by the author.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Artemenkov, A.A. Content of Rare-Earth Elements in Soils of Technogeochemical Anomalies. Russ J Gen Chem 90, 2573–2581 (2020). https://doi.org/10.1134/S1070363220130071

Download citation

Keywords:

  • technogeochemical anomalies
  • rare-earth elements
  • soil contamination
  • elements migration
  • soil protection