Biosorption of Metal Ions by Spirulina plantensis Microalga

Abstract

The sorption of lead, nickel, zinc, chromium(III), and chromium(VI) ions by Spirulina platensis microalga was studied. The effects of pH, metal concentration, and sorption time were assessed. The metal concentrations were measured by atomic absorption spectrometry. The kinetics of biosorption were described in terms of the pseudo-first, pseudo-second, Elovich, and Weber–Morris models. The Langmiur, Freudlich, and Temkin isotherms were used to fit the experimental data. The results showed that the biomass of Spirulina platensis microalga can be efficiently used to treat industrial effluents.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Gimaeva, A.R., Valinurova, E.R., Igdavletova, D.K., and Kudasheva, F.Kh., Sorbts. Kromatogr. Protsessy, 2011, vol. 11, p. 350.

    CAS  Google Scholar 

  2. 2

    Teplaya, G.A., Astrakh. Vestn. Ekol. Obraz., 2013, vol. 23, p. 182.

    Google Scholar 

  3. 3

    Skurlatov, Yu.I., Duka, G.G., and Miziti, A., Vvedenie v ekologicheskuyu khimiyu (Introduction to Ecological Chemistry), Moscow: Vysshaya Shkola, 1994.

  4. 4

    Duca, Gh. and Scurlatov, Iu., Ecological Chemistry, Chişinău: CEUSM, 2002.

  5. 5

    Zinicovscaia, I., Duca, G., Cepoi, L., Chiriac, T., Rudi, L., Mitina, T., Frontasyeva, M.V., Pavlov, S., and Gundorina, S.F., Clean Soil Air Water, 2015, vol. 42, p. 112. https://doi.org/10.1002/clen.201200570

    CAS  Article  Google Scholar 

  6. 6

    Kumar, Y.P, King, P., and Prasad, V.S.R.K., Chem. Eng. J., 2006, vol. 124, p. 63. https://doi.org/10.1016/j.cej.2006.07.010

    CAS  Article  Google Scholar 

  7. 7

    Chan, A., Salsali, H., and McBean, Ed., ACS Sustainable Chem. Eng., 2014, vol. 2, p. 130. https://doi.org/10.1021/sc400289z

  8. 8

    Zhou, G.J., Peng, F.Q., Zhang, L.J., and Ying, G.G., Environ. Sci. Pollut. Res., 2012, vol. 19, p. 2918. https://doi.org/10.1039/C4EM00094C

    CAS  Article  Google Scholar 

  9. 9

    Neudachina, L.K., Petrova, Yu.S., Zasukhin, A.S., Osipova, V.A., Gorbunova, Ye.M., and Larina, T.Yu., Analit. Kontrol’, 2011, vol. 15, p. 87.

    Google Scholar 

  10. 10

    Qaiser, S., Saleemi, A.R., Umar, M., J. Hazard. Mater., 2009, vol. 166, p. 998. https://doi.org/10.1016/j.jhazmat.2008.12.003

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Micheletti, E., Colica, G., Viti, C., Tamagnini, P., and de Philippis, R., J. Appl. Microbiol., 2008, vol. 105, p. 88. https://doi.org/10.1111/j.1365-2672.2008.03728.x

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Chan, S.S., Chow, H., and Wong, M.H., Biomed. Environ. Sci., 1991, vol. 4, p. 250.

    CAS  PubMed  Google Scholar 

  13. 13

    Ferreira, L.S., Rodrigues, M.S., Monteiro de Carvalho, J.C., Lodi, A., Finocchio, E., Perego, P., and Converti, A., Chem. Eng. J., 2011, vol. 173, p. 326. https://doi.org/10.1016/j.jhazmat.2012.03.022

    CAS  Article  Google Scholar 

  14. 14

    Corder, S.L. and Reeves, M., Biotechnol. Appl. Biochem., 1994, vol. 45, p. 847. https://doi.org/10.1007/BF02941854

    Article  Google Scholar 

  15. 15

    Zinicovscaia, I., Yushin, N., Gundorina, S., Demčák, Š., Frontasyeva, M., and Kamanina, I., Desalinat. Water Treat., 2018, vol. 120, p. 158. https://doi.org/10.5004/DWT.2018.22691

    CAS  Article  Google Scholar 

  16. 16

    Langmuir, I., J. Am. Chem. Soc., 1916, vol. 38, p. 2221. https://doi.org/10.1021/ja02268a002

    CAS  Article  Google Scholar 

  17. 17

    Kucherova, A.E., Burakova, I.V., Burakov, A.E, and Bryankin, K.V., Vestn. Tambov. Tekh. Univ., 2017, vol. 23, p. 698

    CAS  Google Scholar 

  18. 18

    Nizamova, G.R., Galimova, R.Z., and Shaikhiev, I.G., Vest. Tekhnol. Univ., 2017, vol. 20, p. 142.

    CAS  Google Scholar 

  19. 19

    Dragan, E.S., Humelnicu, D., Dinu, M.V., and Olariu, R.I., Chem. Eng. J., 2017, vol. 330, p. 675. https://doi.org/10.1016/j.cej.2017.08.004

    CAS  Article  Google Scholar 

  20. 20

    Ho, Y.S., Ng, J.C.Y., and McKay, G., Separ. Purif. Meth., 2000, vol. 29, p. 189. https://doi.org/10.1018/SPM-100100009

    CAS  Article  Google Scholar 

  21. 21

    Wu, F.C., Tseng, R.L., and Juang, R.S., Chem. Eng. J., 2009, vol. 150, p. 366. https://doi.org/10.1016/j.cej.2009.01.014

    CAS  Article  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Foundation for Basic Research (project no.18-29-25023 mk).

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Zinicovscaia.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duca, G., Zinicovscaia, I. & Grozdov, D. Biosorption of Metal Ions by Spirulina plantensis Microalga. Russ J Gen Chem 90, 2546–2551 (2020). https://doi.org/10.1134/S1070363220130034

Download citation

Keywords:

  • Spirulina platensis, metals
  • biosorption
  • kinetics
  • sorption isotherms