Synthesis and Evaluation of Antioxidant, Antibacterial, and Target Protein-Molecular Docking of Novel 5-Phenyl-2,4-dihydro-3H-1,2,4-triazole Derivatives Hybridized with 1,2,3-Triazole via the Flexible SCH2-Bonding

Abstract

Synthesis of some new 5-phenyl-2,4-dihydro-3H-1,2,4-triazole derivatives as hybrids with 1,2,3-triazoles via a flexible bonding, and their antioxidant and antibacterial activity have been studied. IR, 1H and 13C NMR spectra have confirmed the chemical structures of the compounds. Antioxidant activity has been compared with BHA as a standard. Several tested compounds have demonstrated highly potent antioxidant activity. Antibacterial activity of the products has been evaluated against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, and some of those have been characterized as the most potent against E. coli and S. aureus. Molecular docking to the active sites of VIM-2 Metallo-β-Lactamase (MBL) as a target protein has revealed that most compounds have displayed minimal binding energy and good affinity toward the active pocket.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Scheme 1.
Fig. 3.

REFERENCES

  1. 1

    Das, M., Das, B., and Samanta, A., J. Pharm. Pharmacol., 2019, vol. 71, no. 9, p. 1400. https://doi.org/10.1111/jphp.13131

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Shaikh, M.H., Subhedar, D.D., Khan, F.A.K., Sangshetti, J.N., and Shingate, B.B., Chin. Chem. Lett., 2016, vol. 27, no. 2, p. 295. https://doi.org/10.1016/j.cclet.2015.11.003

    CAS  Article  Google Scholar 

  3. 3

    Alaraji, Y.H., Shneine, J.K., and Ahmed, N.A.A., J. Sci. Chem., 2015, vol. 5, no. 5, p. 293. https://www.researchgate.net/publication/280445765

    Google Scholar 

  4. 4

    El Ashry, E.S.H., El Tamany, E.S., Fattah, M.E.D.A., Aly, M.R.E., Boraei, A.T.A., and Duerkop, A., Beilstein. J. Org. Chem., 2013, vol. 9, no. 1, p. 135. https://doi.org/10.3762/bjoc.9.16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    El Ashry, E.S.H., Awad, L.F., and Atta, A.I., Tetrahedron, 2006, vol. 13, no. 62, p. 2943. https://doi.org/10.1016/j.tet.2005.11.045

    CAS  Article  Google Scholar 

  6. 6

    El Ashry, E.S.H., Awad, L.F., Abd Al Moaty, M.N., Ghabbour, H.A., and Barakat, A., J. Mol. Struct., 2018, vol. 1152, p. 87. https://doi.org/10.1016/j.molstruc.2017.09.085

    CAS  Article  Google Scholar 

  7. 7

    El Ashry, E.S.H., Awad, L.F., Abdel Hamid, H.M., and Atta, A.I., Synth. Commun., 2006, vol. 36, no. 19, p. 2769. https://doi.org/10.1080/00397910600767314

    CAS  Article  Google Scholar 

  8. 8

    Rezki, N., Rashed, N., Awad, L.F., Ramadan, E., Abdel-Maggeed, S.M., and El Ashry, E.S.H., Phosphorus, Sulfur, and Silicon, 2009, vol. 184, no. 7, p. 1759. https://doi.org/10.1080/10426500802339873

    CAS  Article  Google Scholar 

  9. 9

    Wang, X., Wang, H., Chen, P., Pang, Y., Zhao, Z., and Wu, G., J. Chem., 2014, vol., 2014, no. p. 9. https://doi.org/10.1155/2014/681364

  10. 10

    Ma, C., Wang, Q., and Zhang, R., Heteroat. Chem., 2008, vol., 19, no. 6, p. 583. https://doi.org/10.1002/hc.20481

    CAS  Article  Google Scholar 

  11. 11

    Jubie, S., Sikdar, P., Antony, S., Kalirajan, R., Gowramma, B., Gomathy, S., and Elango, K., Pak. J. Pharm. Sci., 2011, vol. 24, no. 2, p. 109. https://pubmed.ncbi.nlm.nih.gov/21454157/

    CAS  PubMed  Google Scholar 

  12. 12

    Adam, D., PhD Thesis, Ludwig-Maximilans-Universität, München, 2001.

  13. 13

    Fogliano, V., Verde, V., Randazzo, G., and Ritieni, A., J. Agric. Food Chem., 1999, vol. 47, no. 3, p. 1035. https://doi.org/10.1021/jf980496s

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Asghar, M.N., Khan, I.U., Arshad, M.N., and Sherin, L., Acta Chim. Slov., 2007, vol. 54, no. 2, p. 295. https://www.semanticscholar.org/paper/

    CAS  Google Scholar 

  15. 15

    Aruna Kumari, M., Triloknadh, S., Harikrishna, N., Vijjulatha, M., and Venkata Rao, C., J. Heterocycl. Chem., 2017, vol. 54, no. 6, p. 3672. https://onlinelibrary.wiley.com/doi/full/10.1002/jhet.2995

    CAS  Article  Google Scholar 

  16. 16

    Badawy, M.E.I., Rabea, E.I., Taktak, N.E.M., and El-Nouby, M.A.M., Scientifica, 2016, vol. 2016, no. p. 10. https://doi.org/10.1155/2016/1796256

    CAS  Article  Google Scholar 

  17. 17

    DiscoveryStudio. San Diego, CA, USA, 2008, www3dscom//biovia-discovery-studio

  18. 18

    Maunz, A., Gütlein, M., Rautenberg, M., Vorgrimmler, D., Gebele, D., and Helma, C., Front Pharmacol., 2013, vol. 4, no. p. 38. https://doi.org/10.3389/fphar.2013.00038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Chemical Computing Group M., 2008. https://www.chemcomp.com/

  20. 20

    Halgren, T.A., J. Comput. Chem., 1999, vol. 20, no. 7, p. 720. https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X

    CAS  Article  Google Scholar 

  21. 21

    Vilar, S., Cozza, G., and Moro, S., Curr. Top. Med. Chem., 2008, vol. 8, no. 18, p. 1555. https://doi.org/10.2174/156802608786786624

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Labute, P., Proteins: Struct. Funct. Bioinf., 2009, vol. 75, no. 1, p. 187. https://doi.org/10.1002/prot.22234

    CAS  Article  Google Scholar 

  23. 23

    Goto, J., Kataoka, R., Muta, H., and Hirayama, N., J. Chem. Inf. Model., 2008, vol. 48, no. 3, p. 583. https://doi.org/10.1021/ci700352q

    CAS  Article  PubMed  Google Scholar 

  24. 24

    El Ashry, E.S.H., El Nemr, A., Synthesis of Naturally Occurring Nitrogen Heterocycles from Carbohydrates, New York: John Wiley & Sons; 2008.

  25. 25

    El Ashry, E.S.H., Heterocycles from Carbohydrate Precursors, New York: Springer Science & Business Media; 2007.

  26. 26

    Zhou, S.n., Zhang, L.x., Zhang, A.j., Sheng, J.s., and Zhang, H.l., J. Heterocycl. Chem., 2007, vol. 44, no. 5, p. 1019. https://doi.org/10.1002/jhet.5570440507

    CAS  Article  Google Scholar 

  27. 27

    Padwa, A., Fisera, L., Koehler, K.F., Rodriguez, A., and Wong, G.S.K., J. Org. Chem., 1984, vol. 49, no. 2, p. 276. https://doi.org/10.1021/jo00176a012

    CAS  Article  Google Scholar 

  28. 28

    Li, Z., Seo, T.S., and Ju, J. Tetrahedron Lett., 2004, vol. 45, no. 15, p. 3143. https://doi.org/10.1016/j.tetlet.2004.02.089

    CAS  Article  Google Scholar 

  29. 29

    Tornøe, C.W., Christensen, C., and Meldal, M., J. Org. Chem., 2002, vol. 67, no. 9, p. 3057. https://doi.org/10.1021/jo011148j

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Friestad, G.K., Tetrahedron., 2001, vol. 57, no. 26, p. 5461.

    CAS  Article  Google Scholar 

  31. 31

    Khan, I., Ali, S., Hameed, S., Rama, N.H., Hussain, M.T., Wadood, A., Uddin, R., Ul-Haq, Z., Khan, A., and Ali, S., Eur. J. Med. Chem., 2010, vol. 45, no. 11, p. 5200. https://doi.org/10.1016/j.ejmech.2010.08.034

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Maddila, S., S Kumar, A., Gorle, S., Singh, M., Lavanya, P., and Jonnalagadda, S.B., Lett. Drug Des. Discov., 2013, vol. 10, no. 2, p. 186. https://doi.org/10.2174/157018013804725152

    CAS  Article  Google Scholar 

  33. 33

    Plech, T., Wujec, M., Majewska, M., Kosikowska, U., and Malm, A., Med. Chem. Res., 2013, vol. 22, no. 5, p. 2531. https://doi.org/10.1007/s00044-012-0248-y

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Holla, B.S., Akberali, P.M., and Shivananda, M.K., Il Farmaco., 2001, vol. 56, no. 12, p. 919. https://doi.org/10.1016/S0014-827X(01)01124-7

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Sekhar, M.M., Nagarjuna, U., Padmavathi, V., Padmaja, A., Reddy, N.V., and Vijaya, T., Eur. J. Med. Chem., 2018, vol. 145, no. p. 1. https://doi.org/10.1016/j.ejmech.2017.12.067

    CAS  Article  Google Scholar 

  36. 36

    King, D.T. and Strynadka, N.C.J., Future Med. Chem., 2013, vol. 5, no. 11, p. 1243. https://doi.org/10.4155/fmc.13.55

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Weide, T., Saldanha, S.A., Minond, D., Spicer, T.P., Fotsing, J.R., Spaargaren, M., Frère, J.-M., Bebrone, C., Sharpless, K.B., and Hodder, P.S., ACS Med. Chem. Lett., 2010, vol. 1, no. 4, p. 150. https://doi.org/10.1021/ml900022q

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug Del. Rev., 1997, vol. 23, nos. 1–3, p. 3. https://doi.org/10.1016/S0169-409X(96)00423-1

    CAS  Article  Google Scholar 

  39. 39

    Lipinski, C.A., Drug Discov. Today: Technol., 2004, vol. 1, no. 4, p. 337. https://doi.org/10.1016/j.ddtec.2004.11.007

    CAS  Article  Google Scholar 

  40. 40

    Azad, I., Nasibullah, M., Khan, T., Hassan, F., and Akhter, Y., J. Mol. Graphics Model., 2018, vol. 81, p. 211. https://doi.org/10.1016/j.jmgm.2018.02.013

    CAS  Article  Google Scholar 

Download references

Funding

This research did not receive any grant and specific funding from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. E. I. Badawy.

Ethics declarations

All authors agree with the content and that all gave explicit consent to publish this article. The authors also confirm that there are no known conflicts of interest associated with this publication. There has been no significant financial support for this work that could have influenced its outcome.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashry, E.S.H.E., Elshatanofy, M.M., Badawy, M.E.I. et al. Synthesis and Evaluation of Antioxidant, Antibacterial, and Target Protein-Molecular Docking of Novel 5-Phenyl-2,4-dihydro-3H-1,2,4-triazole Derivatives Hybridized with 1,2,3-Triazole via the Flexible SCH2-Bonding. Russ J Gen Chem 90, 2419–2434 (2020). https://doi.org/10.1134/S1070363220120300

Download citation

Keywords:

  • 5-phenyl-2,4-dihydro-3H-1,2,4-triazole derivatives
  • antibacterial activity
  • antioxidants
  • molecular docking
  • ADMET