Abstract
Synthesis of some new 5-phenyl-2,4-dihydro-3H-1,2,4-triazole derivatives as hybrids with 1,2,3-triazoles via a flexible bonding, and their antioxidant and antibacterial activity have been studied. IR, 1H and 13C NMR spectra have confirmed the chemical structures of the compounds. Antioxidant activity has been compared with BHA as a standard. Several tested compounds have demonstrated highly potent antioxidant activity. Antibacterial activity of the products has been evaluated against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, and some of those have been characterized as the most potent against E. coli and S. aureus. Molecular docking to the active sites of VIM-2 Metallo-β-Lactamase (MBL) as a target protein has revealed that most compounds have displayed minimal binding energy and good affinity toward the active pocket.
This is a preview of subscription content, access via your institution.




REFERENCES
- 1
Das, M., Das, B., and Samanta, A., J. Pharm. Pharmacol., 2019, vol. 71, no. 9, p. 1400. https://doi.org/10.1111/jphp.13131
- 2
Shaikh, M.H., Subhedar, D.D., Khan, F.A.K., Sangshetti, J.N., and Shingate, B.B., Chin. Chem. Lett., 2016, vol. 27, no. 2, p. 295. https://doi.org/10.1016/j.cclet.2015.11.003
- 3
Alaraji, Y.H., Shneine, J.K., and Ahmed, N.A.A., J. Sci. Chem., 2015, vol. 5, no. 5, p. 293. https://www.researchgate.net/publication/280445765
- 4
El Ashry, E.S.H., El Tamany, E.S., Fattah, M.E.D.A., Aly, M.R.E., Boraei, A.T.A., and Duerkop, A., Beilstein. J. Org. Chem., 2013, vol. 9, no. 1, p. 135. https://doi.org/10.3762/bjoc.9.16
- 5
El Ashry, E.S.H., Awad, L.F., and Atta, A.I., Tetrahedron, 2006, vol. 13, no. 62, p. 2943. https://doi.org/10.1016/j.tet.2005.11.045
- 6
El Ashry, E.S.H., Awad, L.F., Abd Al Moaty, M.N., Ghabbour, H.A., and Barakat, A., J. Mol. Struct., 2018, vol. 1152, p. 87. https://doi.org/10.1016/j.molstruc.2017.09.085
- 7
El Ashry, E.S.H., Awad, L.F., Abdel Hamid, H.M., and Atta, A.I., Synth. Commun., 2006, vol. 36, no. 19, p. 2769. https://doi.org/10.1080/00397910600767314
- 8
Rezki, N., Rashed, N., Awad, L.F., Ramadan, E., Abdel-Maggeed, S.M., and El Ashry, E.S.H., Phosphorus, Sulfur, and Silicon, 2009, vol. 184, no. 7, p. 1759. https://doi.org/10.1080/10426500802339873
- 9
Wang, X., Wang, H., Chen, P., Pang, Y., Zhao, Z., and Wu, G., J. Chem., 2014, vol., 2014, no. p. 9. https://doi.org/10.1155/2014/681364
- 10
Ma, C., Wang, Q., and Zhang, R., Heteroat. Chem., 2008, vol., 19, no. 6, p. 583. https://doi.org/10.1002/hc.20481
- 11
Jubie, S., Sikdar, P., Antony, S., Kalirajan, R., Gowramma, B., Gomathy, S., and Elango, K., Pak. J. Pharm. Sci., 2011, vol. 24, no. 2, p. 109. https://pubmed.ncbi.nlm.nih.gov/21454157/
- 12
Adam, D., PhD Thesis, Ludwig-Maximilans-Universität, München, 2001.
- 13
Fogliano, V., Verde, V., Randazzo, G., and Ritieni, A., J. Agric. Food Chem., 1999, vol. 47, no. 3, p. 1035. https://doi.org/10.1021/jf980496s
- 14
Asghar, M.N., Khan, I.U., Arshad, M.N., and Sherin, L., Acta Chim. Slov., 2007, vol. 54, no. 2, p. 295. https://www.semanticscholar.org/paper/
- 15
Aruna Kumari, M., Triloknadh, S., Harikrishna, N., Vijjulatha, M., and Venkata Rao, C., J. Heterocycl. Chem., 2017, vol. 54, no. 6, p. 3672. https://onlinelibrary.wiley.com/doi/full/10.1002/jhet.2995
- 16
Badawy, M.E.I., Rabea, E.I., Taktak, N.E.M., and El-Nouby, M.A.M., Scientifica, 2016, vol. 2016, no. p. 10. https://doi.org/10.1155/2016/1796256
- 17
DiscoveryStudio. San Diego, CA, USA, 2008, www3dscom//biovia-discovery-studio
- 18
Maunz, A., Gütlein, M., Rautenberg, M., Vorgrimmler, D., Gebele, D., and Helma, C., Front Pharmacol., 2013, vol. 4, no. p. 38. https://doi.org/10.3389/fphar.2013.00038
- 19
Chemical Computing Group M., 2008. https://www.chemcomp.com/
- 20
Halgren, T.A., J. Comput. Chem., 1999, vol. 20, no. 7, p. 720. https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X
- 21
Vilar, S., Cozza, G., and Moro, S., Curr. Top. Med. Chem., 2008, vol. 8, no. 18, p. 1555. https://doi.org/10.2174/156802608786786624
- 22
Labute, P., Proteins: Struct. Funct. Bioinf., 2009, vol. 75, no. 1, p. 187. https://doi.org/10.1002/prot.22234
- 23
Goto, J., Kataoka, R., Muta, H., and Hirayama, N., J. Chem. Inf. Model., 2008, vol. 48, no. 3, p. 583. https://doi.org/10.1021/ci700352q
- 24
El Ashry, E.S.H., El Nemr, A., Synthesis of Naturally Occurring Nitrogen Heterocycles from Carbohydrates, New York: John Wiley & Sons; 2008.
- 25
El Ashry, E.S.H., Heterocycles from Carbohydrate Precursors, New York: Springer Science & Business Media; 2007.
- 26
Zhou, S.n., Zhang, L.x., Zhang, A.j., Sheng, J.s., and Zhang, H.l., J. Heterocycl. Chem., 2007, vol. 44, no. 5, p. 1019. https://doi.org/10.1002/jhet.5570440507
- 27
Padwa, A., Fisera, L., Koehler, K.F., Rodriguez, A., and Wong, G.S.K., J. Org. Chem., 1984, vol. 49, no. 2, p. 276. https://doi.org/10.1021/jo00176a012
- 28
Li, Z., Seo, T.S., and Ju, J. Tetrahedron Lett., 2004, vol. 45, no. 15, p. 3143. https://doi.org/10.1016/j.tetlet.2004.02.089
- 29
Tornøe, C.W., Christensen, C., and Meldal, M., J. Org. Chem., 2002, vol. 67, no. 9, p. 3057. https://doi.org/10.1021/jo011148j
- 30
Friestad, G.K., Tetrahedron., 2001, vol. 57, no. 26, p. 5461.
- 31
Khan, I., Ali, S., Hameed, S., Rama, N.H., Hussain, M.T., Wadood, A., Uddin, R., Ul-Haq, Z., Khan, A., and Ali, S., Eur. J. Med. Chem., 2010, vol. 45, no. 11, p. 5200. https://doi.org/10.1016/j.ejmech.2010.08.034
- 32
Maddila, S., S Kumar, A., Gorle, S., Singh, M., Lavanya, P., and Jonnalagadda, S.B., Lett. Drug Des. Discov., 2013, vol. 10, no. 2, p. 186. https://doi.org/10.2174/157018013804725152
- 33
Plech, T., Wujec, M., Majewska, M., Kosikowska, U., and Malm, A., Med. Chem. Res., 2013, vol. 22, no. 5, p. 2531. https://doi.org/10.1007/s00044-012-0248-y
- 34
Holla, B.S., Akberali, P.M., and Shivananda, M.K., Il Farmaco., 2001, vol. 56, no. 12, p. 919. https://doi.org/10.1016/S0014-827X(01)01124-7
- 35
Sekhar, M.M., Nagarjuna, U., Padmavathi, V., Padmaja, A., Reddy, N.V., and Vijaya, T., Eur. J. Med. Chem., 2018, vol. 145, no. p. 1. https://doi.org/10.1016/j.ejmech.2017.12.067
- 36
King, D.T. and Strynadka, N.C.J., Future Med. Chem., 2013, vol. 5, no. 11, p. 1243. https://doi.org/10.4155/fmc.13.55
- 37
Weide, T., Saldanha, S.A., Minond, D., Spicer, T.P., Fotsing, J.R., Spaargaren, M., Frère, J.-M., Bebrone, C., Sharpless, K.B., and Hodder, P.S., ACS Med. Chem. Lett., 2010, vol. 1, no. 4, p. 150. https://doi.org/10.1021/ml900022q
- 38
Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug Del. Rev., 1997, vol. 23, nos. 1–3, p. 3. https://doi.org/10.1016/S0169-409X(96)00423-1
- 39
Lipinski, C.A., Drug Discov. Today: Technol., 2004, vol. 1, no. 4, p. 337. https://doi.org/10.1016/j.ddtec.2004.11.007
- 40
Azad, I., Nasibullah, M., Khan, T., Hassan, F., and Akhter, Y., J. Mol. Graphics Model., 2018, vol. 81, p. 211. https://doi.org/10.1016/j.jmgm.2018.02.013
Funding
This research did not receive any grant and specific funding from funding agencies in the public, commercial, or not-for-profit sectors.
Author information
Affiliations
Corresponding author
Ethics declarations
All authors agree with the content and that all gave explicit consent to publish this article. The authors also confirm that there are no known conflicts of interest associated with this publication. There has been no significant financial support for this work that could have influenced its outcome.
Rights and permissions
About this article
Cite this article
Ashry, E.S.H.E., Elshatanofy, M.M., Badawy, M.E.I. et al. Synthesis and Evaluation of Antioxidant, Antibacterial, and Target Protein-Molecular Docking of Novel 5-Phenyl-2,4-dihydro-3H-1,2,4-triazole Derivatives Hybridized with 1,2,3-Triazole via the Flexible SCH2-Bonding. Russ J Gen Chem 90, 2419–2434 (2020). https://doi.org/10.1134/S1070363220120300
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords:
- 5-phenyl-2,4-dihydro-3H-1,2,4-triazole derivatives
- antibacterial activity
- antioxidants
- molecular docking
- ADMET