Stabilization of Double-Stranded Poly(A)·Poly(U) with ZnTMPyP4 Metalloporphyrin in Aqueous Solution

Abstract

UV-Vis absorption spectra of aqueous solutions containing both metalloporphyrin Zn(X)TMPyP4 [H2TMPyP4—5,10,15,20-tetrakis(1-methylpyridin-4-yl)-21H,23H-porphyrin] and synthetic polyadenylic-polyuridylic acid Poly(A)·Poly(U) over the temperature range from 20 to 70°C (pH = 7.0, I = 0.15 M.) have been analyzed. Deconvolution of the spectrometric data matrix, without postulating a physicochemical equilibrium model, has allowed estimation of the contribution of the Poly(A)·Poly(U)·(ZnTMPyP4)n complex to the total change in the spectra. Chemometric analysis has shown an increase in the melting temperature of this ternary complex by 9.4°С compared to pure polyribonucleotide, which indicates the stabilization of the bonds between nucleic bases in the Poly(A)·Poly(U) polynucleotide under the influence of bound porphyrin.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    Kim, Y.-H., Lee, C., Kim, S.K., and Jeoung, S.C., Biophys. Chem., 2014, vols. 190–191, p. 17. https://doi.org/10.1016/j.bpc.2014.03.005

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Alberti, E., Zampakou, M., and Donghi, D., J. Inorg. Biochem., 2016, vol. 163, p. 278. https://doi.org/10.1016/j.jinorgbio.2016.04.021

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Choi, J.K., D’Urso, A., and Balaz, M., J. Inorg. Biochem., 2013, vol. 127, p. 1. https://doi.org/10.1016/j.jinorgbio.2013.05.018

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Kim, Y.R., Gong, L., Park, J., Jang, Y.J., Kim, J., and Kim, S.K., J. Inorg. Biochem., 2012, vol. 116, p. 2330. https://doi.org/10.1021/jp212291r

    CAS  Article  Google Scholar 

  5. 5

    Gong, L., Bae, I., and Kim, S.K., J. Phys. Chem. (B), 2012, vol. 116, p. 12510 https://doi.org/10.1021/jp3081063

    CAS  Article  Google Scholar 

  6. 6

    Gong, L., Jang, Y.J., Kim, J., and Kim, S.K., J. Phys. Chem. (B) , 2012, vol. 116, p. 9619. https://doi.org/10.1021/jp3041346

    CAS  Article  Google Scholar 

  7. 7

    Zhou, Z.-X., Gao, F., Chen, X., Tian, X.-J., and Ji, L.-N., Inorg. Chem., 2014, vol. 53, p. 10015. https://doi.org/10.1021/ic501337c

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Ghazaryan, A.A., Dalyan, Y.B., Haroutiunian, S.G., Tikhomirova, A., Taulier, N., Wells, J.W., and Chalikian, T.V., J. Am. Chem. Soc., 2006, vol. 128, p. 1914. https://doi.org/10.1021/ja054070n

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Tolstykh, G. and Kudrev, A., J. Mol. Struct., 2015, vol. 1098, p. 342. https://doi.org/10.1016/j.molstruc.2015.06.031

    CAS  Article  Google Scholar 

  10. 10

    Sabharwal, N.C., Mendoza, O., Nicoludis, J.M., Ruan, T., Mergny, J.-L., and Yatsunyk, L.A., J. Biol. Inorg. Chem., 2016, vol. 21, p. 227. https://doi.org/10.1007/s00775-015-1325-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Briggs, B.N., Gaier, A.J., Fanwick, P.E., Dogutan, D.K., and McMillin, D.R., Biochem., 2012, vol. 51, p. 7496. https://doi.org/10.1021/bi300828z

    CAS  Article  Google Scholar 

  12. 12

    Uno, T., Aoki, K., Shikimi, T., Hiranuma, Y., Tomisugi, Y., and Ishikawa, Y., Biochem., 2002, vol. 41, p. 13059. https://doi.org/10.1021/bi026139z

    CAS  Article  Google Scholar 

  13. 13

    Qin, T., Liu, K., Song, D., Yang, C., Zhao, H., and Su, H., Int. J. Mol. Sci., 2018, vol. 19, p. 1071. https://doi.org/10.3390/ijms19041071

    CAS  Article  PubMed Central  Google Scholar 

  14. 14

    Tolstykh, G., Sizov, V., and Kudrev, A., J. Inorg. Biochem., 2016, vol. 161, p. 83. https://doi.org/10.1016/j.jinorgbio.2016.05.004

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Pan, J. and Zhang, S., J. Biol. Inorg. Chem., 2009, vol. 14, p. 401. https://doi.org/10.1007/s00775-008-0457-5

    CAS  Article  PubMed  Google Scholar 

  16. 16

    De Clercq, E., Torrence, P., De Somer, V., and Witkop, B., J. Biol. Chem., 1975, vol. 250, p. 2521.

    CAS  Article  Google Scholar 

  17. 17

    Thang, M.N., Guschlbauer, W., Pathol. Biol., 1992, vol. 40, p. 1006.

    CAS  PubMed  Google Scholar 

  18. 18

    De Clercq, E., Top. Curr. Chem., 1974, vol. 52, p. 173. https://doi.org/10.1007/3-540-06873-2_17

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Saenger, W., Principles of Nucleic Acid Structure, New York: Springer-Verlag, 1988.

  20. 20

    Barton, J.K. and Lippard, S.J., Biochem., 1979, vol. 18, p. 2661.

    CAS  Article  Google Scholar 

  21. 21

    Ray, A., Kumar, G.S., Das, S., and Maiti, M., Biochem., 1999, vol. 38, p. 6239.

    CAS  Article  Google Scholar 

  22. 22

    He, X., Li, J., Zhanga, H., and Tan, L., Mol. BioSyst., 2014, vol. 10, p. 2552. https://doi.org/10.1039/c4mb00304g

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Tan, L.-F., Liu, J., Shen, J.-L., Liu, X.-H., Zeng, L.-L., and Jin, L.-H., Inorg. Chem., 2012, vol. 51, p. 4417. https://doi.org/10.1021/ic300093h

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Li, J., Sun, Y., Xie, L., He, X., and Tan, L., J. Inorg. Biochem., 2015, vol. 143, p. 56. https://doi.org/10.1016/j.jinorgbio.2014.12.007

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Li, J., Sun, Y., Zhu, Z., Zhao, H., and Tan, L., J. Inorg. Biochem., 2017, vol. 161, p. 128. https://doi.org/10.1016/j.jinorgbio.2016.04.024

    CAS  Article  Google Scholar 

  26. 26

    Ivanov, M., Sizov, V., and Kudrev, A., J. Mol. Struct., 2020, vol. 1202, p. 127365. https://doi.org/10.1016/j.molstruc.2019.127365

    CAS  Article  Google Scholar 

  27. 27

    Tauler, R. and de Juan, A., in Practical Guide to Chemometrics, Gemperline, P., Ed., Boca Raton: Taylor&Francis Group, LLC, 2006 p. 421.

  28. 28

    Tauler, R. and de Juan, A., in Practical Guide to Chemometrics, Gemperline, P., Ed., Boca Raton: Taylor&Francis Group, LLC, 2006, p. 453.

  29. 29

    Tauler, R. and de Juan, A., in Practical Guide to Chemometrics, Gemperline, P., Ed., Boca Raton: Taylor&Francis Group, LLC, 2006, p. 453. http://www.cid.csic.es/homes/rtaqam/tmp/WEB_MCR/down_mcrt.html

  30. 30

    Gargallo, R., Eritja, R., and Kudrev, A., Russ. J. Gen. Chem., 2010, vol. 80, p. 485. https://doi.org/10.1134/S1070363210030205

    CAS  Article  Google Scholar 

  31. 31

    Kudrev, A.G., Russ. J. Gen. Chem., 2017, vol. 87, p. 788. https://doi.org/10.1134/S107036321704020X

    CAS  Article  Google Scholar 

  32. 32

    Kudrev, A., Biopolymers, 2013, vol. 99, p. 621. https://doi.org/10.1002/bip.22227

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Jollife, I.T., Principal Component Analysis, Berlin: Springer Verlag, 2002.

  34. 34

    Windig, W. and Guilment, J., Anal. Chem., 1991, vol. 63, p. 1425. https://doi.org/10.1021/ac00014a016

    CAS  Article  Google Scholar 

  35. 35

    Golub, G.H., Van Loan, C.F., Matrix Computations, London: The Johns Hopkins Univ. Press, 1989.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. G. Kudrev.

Ethics declarations

No conflict of interest was declared by the author.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kudrev, A.G. Stabilization of Double-Stranded Poly(A)·Poly(U) with ZnTMPyP4 Metalloporphyrin in Aqueous Solution. Russ J Gen Chem 90, 2281–2288 (2020). https://doi.org/10.1134/S1070363220120105

Download citation

Keywords:

  • biopolymer stabilization
  • Poly(A)·Poly(U)
  • ZnTMPyP4
  • chemometric analysis
  • spectrophotometry