Quantum Chemical Analysis of the Processes of Synthesis of Vanadium Oxide Structures on the Silica Surface


Based on a combination of quantum chemical simulation and experimental studies, the formation of vanadium oxide structures on the silica surface when sequentially treated with VOCl3 and H2O vapors was analyzed. The synthesis products were identified by IR spectroscopy. Changes in the composition and structure of the resultant surface species according to the process temperature and VOCl3 vapor pressure in the reactor were predicted by quantum chemical methods. By the example of the synthesis at 473 K in a flow-through system and study of the chemical composition and structure of the new functional groups formed on the surface, a good agreement between the experimental and calculated data was demonstrated. The results of IR spectroscopic studies of the samples synthesized were processed using quantum chemical approaches. The characteristic IR absorption band due to vibrations of the bridging bonds of vanadium atoms with the Si–O–V matrix, localized at 920–945 or 960 cm–1 depending on the structure of the surface sites, was used as the basis for identification of the surface vanadium oxide groups.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Malygin, A.A., in Nanomaterialy: svoistva i perspektivnye prilozheniya (Nanomaterials: Properties and Promising Applications), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2015, p. 84.

  2. 2

    Carrero, C.A., Schloegl, R., Wachs, I.E., and Schomaecker, R.,ACS Catal., 2014, vol. 4, p. 3357. https://doi.org/10.1021/cs5003417

    CAS  Article  Google Scholar 

  3. 3

    Hamilton, N., Wolfram, T., Müller, G.T., Hävecker, M., Kröhnert, J., Carrero, C., Schomäcker, R., T runschke, A., and Schlögl, R., Catal. Sci. Technol., 2012, vol. 2, p. 1346. https://doi.org/10.1039/C2CY00541G

    CAS  Article  Google Scholar 

  4. 4

    Strunk, J., Bañares, M.A., and Wachs, I.E., Top. Catal., 2017, vol. 60, p.1577. https://doi.org/10.1007/s11244-017-0841-x

    CAS  Article  Google Scholar 

  5. 5

    George, S.M., Chem. Rev., 2010, vol. 110, p. 111. https://doi.org/10.1021/cr900056b

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Badot, J.C., Mantoux, A., Baffier, N., Dubrunfaut, O., and Lincot, D., J. Mater. Chem., 2004, vol. 14, p. 3411. https://doi.org/10.1039/B410324F

    CAS  Article  Google Scholar 

  7. 7

    Badot, J.C., Ribes, S., Yousfi, E.B., Vivier, V., Pereira-Ramos, J.P., Baffier, N., and Lincotb, D., Electrochem. Solid State Lett., 2000, vol. 3, p. 485. https://doi.org/10.1149/1.1391187

    CAS  Article  Google Scholar 

  8. 8

    Malygin, A.A. and Dubrovenskii, S.D., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 643. https://doi.org/10.1134/S1070363210030448

    CAS  Article  Google Scholar 

  9. 9

    Lee, E.L. and Wachs, I.E., J. Phys. Chem. C, 2007, vol. 111, p. 14410. https://doi.org/10.1021/jp0735482

    CAS  Article  Google Scholar 

  10. 10

    Drozdov, E.O., Dubrovenskii, S.D., and Malygin, A.A., Russ. J. Gen. Chem., 2016, vol. 86, no. 10, p. 2263. https://doi.org/10.1134/S1070363216100042

    CAS  Article  Google Scholar 

  11. 11

    Gukova, A.N., Dubrovenskii, S.D., and Malygin, A.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 6, p. 1168. https://doi.org/10.1134/S1070363210060204

    CAS  Article  Google Scholar 

  12. 12

    Pedersen, H. and Elliott, S.D., Theor. Chem. Acc., 2014, vol. 133, p. 1. https://doi.org/10.1007/s00214-014-1476-7

    CAS  Article  Google Scholar 

  13. 13

    Drozdov, E.O., Gukova, A.N., Dubrovenskii, S.D., and Malygin, A.A.,Russ. J. Gen. Chem., 2016, vol. 86, no. 9, p. 2113. https://doi.org/10.1134/S1070363216090231

    CAS  Article  Google Scholar 

  14. 14

    Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, Chichester: Wiley, 1979.

  15. 15

    Zhuravlev, L.T., Colloids Surf. Physicochem. Eng. Asp., 2000, vol. 173, p. 1. https://doi.org/10.1016/S0927-7757(00)00556-2

    CAS  Article  Google Scholar 

  16. 16

    Morrow, B.A. and McFarlan, A.J., J. Non-Cryst. Solids, 1990, vol. 120, p. 61. https://doi.org/10.1016/0022-3093(90)90191-N

    CAS  Article  Google Scholar 

  17. 17

    Dergachev, V.F., Malygin, A.A., and Kol’tsov, S.I., Zh. Prikl. Khim., 1981, vol. 54, no. 9, p. 1972.

    CAS  Google Scholar 

  18. 18

    Sammelselg, V., Rosental, A., Tarre, A., Niinistö, L., Heiskanen, K., Ilmonen, K., Johansson, L.-S., and Uustare, T., Appl. Surf. Sci., 1998, vol. 134, p. 78. https://doi.org/10.1016/S0169-4332(98)00224-4

    CAS  Article  Google Scholar 

  19. 19

    Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 6, p. 1176. https://doi.org/10.1134/S1070363210060216

    CAS  Article  Google Scholar 

  20. 20

    Gijzeman, O.L.J., van Lingen, J.N.J., van Lenthe, J.H., Tinnemans, S.J., Keller, D.E., and Weckhuysen, B.M., Chem. Phys. Lett., 2004, vol. 397, p. 277. https://doi.org/10.1016/j.cplett.2004.09.001

    CAS  Article  Google Scholar 

  21. 21

    Magg, N., Immaraporn, B., Giorgi, J.B., Schroeder, T., Bäumer, M., Döbler, J., Wu, Z., Kondratenko, E., Cherian, M., Baerns, M., Stair, P.C., Sauer, J., and Freund, H.-J., J. Catal., 2004, vol. 226, p. 88. https://doi.org/10.1016/j.jcat.2004.04.021

    CAS  Article  Google Scholar 

  22. 22

    Shimanouchi, T., J. Phys. Chem. Ref. Data, 1977, vol. 6, p. 993. doi.org 10.1063/1.555560

    CAS  Article  Google Scholar 

  23. 23

    Hillerns, F. and Rehder, D., Chem. Ber., 1991, vol. 124, p. 2249. https://doi.org/10.1002/cber.19911241017

    CAS  Article  Google Scholar 

  24. 24

    Rulkens, R., Male, J.L., Terry, K.W., Olthof, B., Khodakov, A., Bell, A.T., Iglesia, E., and Tilley, T.D., Chem. Mater., 1999, vol. 11, p. 2966. https://doi.org/10.1021/cm990350o

    CAS  Article  Google Scholar 

  25. 25

    Ek, S., Root, A., Peussa, M., and Niinistö, L., Thermochim. Acta, 2001, vol. 379, p. 201. https://doi.org/10.1016/S0040-6031(01)00618-9

    CAS  Article  Google Scholar 

  26. 26

    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H.,Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., and Cioslowski, J.,Gaussian 09, Revision A1, Gaussian Inc., Wallingford CT, 2009.

  27. 27

    Becke, A., J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.464913

    CAS  Article  Google Scholar 

  28. 28

    Rassolov, V.A., Ratner, M.A., Pople, J.A., Redfern, P.C., and Curtiss, L.A., J. Comp. Chem., 2001, vol. 22, p. 976. https://doi.org/10.1002/jcc.1058

    CAS  Article  Google Scholar 

  29. 29

    Simons, J., Joergensen, P., Taylor, H., and Ozment, J., J. Phys. Chem., 1983, vol. 87, p. 2745. https://doi.org/10.1021/j100238a013

    CAS  Article  Google Scholar 

  30. 30

    Barone, V., J. Chem. Phys., 2004, vol. 122, p. 014108. https://doi.org/10.1063/1.1824881

    CAS  Article  Google Scholar 

  31. 31

    Rozanska, X., Kondratenko, E.V., and Sauer, J., J. Catal., 2008, vol. 256, p. 84. https://doi.org/10.1016/j.jcat.2008.03.002

    CAS  Article  Google Scholar 

  32. 32

    Koukkari, P. and Pajarre, R., Pure Appl. Chem., 2011, vol. 83, p. 1243. https://doi.org/10.1351/PAC-CON-10-09-36

    CAS  Article  Google Scholar 

Download references


This study was partially supported by the Ministry of Education and Science of the Russian.

Author information



Corresponding author

Correspondence to S. D. Dubrovenskii.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drozdov, E.O., Dubrovenskii, S.D. & Malygin, A.A. Quantum Chemical Analysis of the Processes of Synthesis of Vanadium Oxide Structures on the Silica Surface. Russ J Gen Chem 90, 880–888 (2020). https://doi.org/10.1134/S1070363220050217

Download citation


  • atomic layer deposition
  • silica
  • IR spectroscopy
  • quantum chemical simulation
  • vanadium oxychloride