Kinetic Study of the Redox Properties of [5,10,15,20-Tetrakis(2,5-dimethoxyphenyl)porphyrinato]cobalt(II) in the Reaction with Hydrogen Peroxide

Abstract

The reaction of [5,10,15,20-tetrakis(2,5-dimethoxyphenyl)porphyrinato]cobalt(II) with hydrogen peroxide in acetonitrile at 298 K has been studied by spectral methods. The kinetic parameters of the redox process have been determined, and a plausible mechanism has been proposed. The reaction involves generation of highly active cobalt porphyrin species capable of oxidizing hydrogen peroxide. Methoxy groups in the ligand have been found to act as redox activators to enhance the reactivity of the complex. The redox potentials of the complex determined by cyclic voltammetry indicate the possibility of formation of one-, two-, and three-electron oxidized species.

This is a preview of subscription content, log in to check access.

Scheme
Fig. 1.
Fig. 2.
Scheme

REFERENCES

  1. 1

    Patel, M. and Day, B.J., Trends Pharmacol. Sci., 1999, vol. 20, no. 9, p. 359. https://doi.org/10.1016/S0165-6147(99)01336-X

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Dismukes, G.C., Chem. Rev., 1996, vol. 96, no. 7, p. 2909. https://doi.org/10.1021/cr950053c

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Collman, J.P., Lee, V.J., Kellen-Yuen, C.J., Zhang, X., Ibers, J.A., and Brauman, J.I., J. Am. Chem. Soc., 1995, vol. 117, no. 2, p. 692. https://doi.org/10.1021/ja00107a013

    CAS  Article  Google Scholar 

  4. 4

    Avdeev, M.V., Bagri, E.I., Maravin, G.B., and Korolev, Yu.M.,Kinet. Catal., 2002, vol. 43, no. 1, p. 38. https://doi.org/10.1023/A:1014240927361

    CAS  Article  Google Scholar 

  5. 5

    Arasasingham, R.D., He, G.-X., and Bruce, T.C., J. Am. Chem. Soc., 1993, vol. 115, no. 18, p. 7985. https://doi.org/10.1021/ja00071a008

    CAS  Article  Google Scholar 

  6. 6

    Zaitseva, S.V., Zdanovich, S.A., Kudrik, E.V., and Koifman, O.I.,Russ. J. Inorg. Chem., 2017, vol. 62, no. 9, p. 1257. https://doi.org/10.1134/S0036023617090194

    CAS  Article  Google Scholar 

  7. 7

    Capobianchi, A., Paoletti, A.M., Rossia, G., Zanotti, G., and Pennesi, G., Sens. Actuators, B, 2009, vol. 142, no. 1, p. 159. https://doi.org/10.1016/j.snb.2009.08.021

    CAS  Article  Google Scholar 

  8. 8

    Zanotti, G., Angelini, N., Notarantonio, S., Paoletti, A.M., Pennesi, G., Rossi, G., Lembo, A., Colonna, D., Di Carlo, A., Reale, A., Brown, T.M., and Calogero, G., Int. J. Photoenergy, 2010, vol. 2010,article ID 136807. https://doi.org/10.1155/2010/136807

  9. 9

    Milaeva, E.R., Ross. Khim. Zh., 2004, no. 4, p. 20.

    Google Scholar 

  10. 10

    Meunier, B., Robert, A., Pratviel, G., and Bernadou, The Porphyrin Handbook, Kadish, K.M., Smith, K.M., and Guilard, R., New York: Academic, 2000, vol. 4, chap. 31, p. 119.

  11. 11

    Batinic-Haberle, I., Methods in Enzymology, Packer, L., Ed., New York: Academic, 2002, vol. 349, p. 223. https://doi.org/10.1016/S0076-6879(02)49337-8

  12. 12

    Trojánek, A., Langmaier, J., and Samec, Z., Electrochem. Commun., 2006, vol. 8, no. 3, p. 475. https://doi.org/10.1016/j.elecom.2006.01.004

    CAS  Article  Google Scholar 

  13. 13

    Song, E., Shi, C., and Anson, F.C., Langmuir, 1998, vol. 14, no. 15, p. 4315. https://doi.org/10.1021/la980084d

    CAS  Article  Google Scholar 

  14. 14

    Shi, C., Steiger, B., Yuasa, M., and Anson, F.C., Inorg. Chem., 1997, vol. 36, no. 20, p. 4294. https://doi.org/10.1021/ic970516s

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Shi, C. and Anson, F.C., Inorg. Chem., 1998, vol. 37, no. 5, p. 1037. https://doi.org/10.1021/ic971255p

    CAS  Article  Google Scholar 

  16. 16

    Kadish, K.M., Li, J., Van Caemelbecke, E., Ou, Z., Guo, N., Autret, M., D’Souza, F., and Tagliatesta, P., Inorg. Chem., 1997, vol. 36, no. 27, p. 6292. https://doi.org/10.1021/ic970789n

    CAS  Article  Google Scholar 

  17. 17

    Fukuzumi, S., Miyamoto, K., Suenobu, T., Van Caemelbecke, E., and Kadish, K.M., J. Am. Chem. Soc., 1998, vol. 120, no. 12, p. 2880. https://doi.org/10.1021/ja973257e

    CAS  Article  Google Scholar 

  18. 18

    Zaitseva, S.V., Tyurin, D.V., Zdanovich, S.A., and Koifman, O.I.,Russ. J. Inorg. Chem., 2019, vol. 64, no. 6, p. 815. https://doi.org/10.1134/S0036023619060184

    CAS  Article  Google Scholar 

  19. 19

    Zaitseva, S.V., Simonova, O.R., Zdanovich, S.A., and Koifman, O.I.,Macroheterocycles, 2018, vol. 11, no. 1, p. 29. https://doi.org/10.6060/mhc180173s

    CAS  Article  Google Scholar 

  20. 20

    Grishina, E.G., Makarova, A.S., Kudrik, E.V., Makarova, S.V., and Koifman, O.I., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 3, p. 704. https://doi.org/10.1134/S0036024416030134

    CAS  Article  Google Scholar 

  21. 21

    Mu, X.H. and Kadish, K.M., Inorg. Chem., 1989, vol. 28, no. 19, p. 3743. https://doi.org/10.1021/ic00318a025

    CAS  Article  Google Scholar 

  22. 22

    Ye, L., Fang, Y., Ou, Z., Xue, S., and Kadish, K.M., Inorg. Chem., 2017, vol. 56, no. 21, p. 13613. https://doi.org/10.1021/acs.inorgchem.7b02405

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Tesakova, M.V., Noskov, A.V., Bazanov, M.I., Berezina, N.M., and Parfenyuk, V.I., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 1, p. 9. https://doi.org/10.1134/S0036024411120326

    CAS  Article  Google Scholar 

  24. 24

    Mamardashvili, G., Kaigorodova, E., Simonova, O., and Mamardashvili, N., J. Coord. Chem., 2018, vol. 71, no. 24, p. 4194. https://doi.org/10.1080/00958972.2018.1535112

    CAS  Article  Google Scholar 

  25. 25

    Gasyna, Z. and Stillman, M.J., Inorg. Chem., 1990, vol. 29, no. 25, p. 5101. https://doi.org/10.1021/ic00350a017

    CAS  Article  Google Scholar 

  26. 26

    Wolberg, A. and Manassen, J., J. Am. Chem. Soc., 1970, vol. 92, no. 10, p. 2982. https://doi.org/10.1021/ja00713a010

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Zaitseva, S.V., Tyulyaeva, E.Yu., Simonova, O.R., Zdanovich, S.A., Tyurin, D.V., and Koifman, O.I., J. Coord. Chem., 2018, vol. 71, nos. 16–18, p. 2995. https://doi.org/10.1080/00958972.2018.1506109

    CAS  Article  Google Scholar 

  28. 28

    Tan, L.Y., Winer, A.M., and Pimentel, G.C., J. Chem. Phys., 1972, vol. 57, no. 9, p. 4028. https://doi.org/10.1063/1.1678876

    CAS  Article  Google Scholar 

  29. 29

    Zhang, X.K., Parnis, J.M., Lewars, E.G., and March, R.E., Can. J. Chem., 1997, vol. 75, no. 3, p. 276. https://doi.org/10.1139/v97-031

    CAS  Article  Google Scholar 

  30. 30

    Scherer, J.J., Aniolek, K.W., Cernansky, N.P., and Rakestraw, D.J.,J. Chem. Phys., 1997, vol. 107, no. 16, p. 6196. https://doi.org/10.1063/1.474284

    CAS  Article  Google Scholar 

  31. 31

    Diken, E.G., Weddle, G.H., Headrick, J.M., Weber, J.M., and Johnson, M.A., J. Phys. Chem. A, 2004, vol. 108, no. 46, p. 10116. https://doi.org/10.1021/jp0404403

    CAS  Article  Google Scholar 

  32. 32

    Oxley, J., Smith, J., Brady, J., Dubnikova, F., Kosloff, R., Zeiri, L., and Zeiri, Y., Appl. Spectrosc., 2008, vol. 62, no. 8, p. 906. https://doi.org/10.1366/000370208785284420

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Pettersson, M., Tuominen, S., and Räsänen, M., J. Phys. Chem. (A), 1997, vol. 101, no. 6, p. 1166. https://doi.org/10.1021/jp962946u

    CAS  Article  Google Scholar 

  34. 34

    Amanullah, S., Singha, A., and Dey, A., Coord. Chem. Rev., 2019, vol. 386, p. 183. https://doi.org/10.1016/j.ccr.2019.01.021

    CAS  Article  Google Scholar 

  35. 35

    Kitagawa, T. and Ozaki, Y., Metal Complexes with Tetrapyrrole LigandsI, Buchler, J.W., Ed., Berlin: Springer, 1987, p. 71. https://doi.org/10.1007/BFb0036790

  36. 36

    Patil, A.O., Curtin, D.Y., and Paul, I.C., J. Am. Chem. Soc., 1984, vol. 106, no. 2, p. 348. https://doi.org/10.1021/ja00314a017

    CAS  Article  Google Scholar 

  37. 37

    Yoshida, R., Isozaki, K., Yokoi, T., Yasuda, N., Sadakane, K., Iwamoto, T., Takaya, H., and Nakamura, M., Org. Biomol. Chem., 2016, vol. 14, no. 31, p. 7468. https://doi.org/10.1039/c6ob00969g

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Fukushima, K. and Sakurada, M., J. Phys. Chem., 1976, vol. 80, no. 12, p. 1367. https://doi.org/10.1021/j100553a022

    CAS  Article  Google Scholar 

  39. 39

    Gozzelino, R., Jeney, V., and Soares, M.P., Annu. Rev. Pharmacol. Toxicol., 2010, vol. 50, p. 323. https://doi.org/10.1146/annurev.pharmtox.010909.105600

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Sugishima, M., Sakamoto, H., Higashimoto, Y., Noguchi, M., and Fukuyama, K., J. Biol. Chem., 2003, vol. 278, no. 34, p. 32352. https://doi.org/10.1074/jbc.M303682200

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Zhang, H., Liu, N., Zhao, J., Ge, F., Xu, Y., and Chen, Y.,Chemosphere, 2019, vol. 223, p. 659. https://doi.org/10.1016/j.chemosphere.2019.01.135

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Müller, T., Rafelsberger, M., Vergeiner, C., and Kräutler, B.,Angew. Chem., Int. Ed., 2011, vol. 50, no. 45, p. 10724. https://doi.org/10.1002/anie.201103934

    CAS  Article  Google Scholar 

  43. 43

    Simonova, O.R., Zdanowich, S.A., and Zaitseva, S.V., Russ. J. Gen. Chem., 2010, vol. 80, no. 12, p. 2512. https://doi.org/10.1134/S1070363210120182

    CAS  Article  Google Scholar 

  44. 44

    Simonova, O.R., Zaitseva, S.V., and Koifman, O.I., Russ. J. Gen. Chem., 2016, vol. 86, no. 6, p. 1322. https://doi.org/10.1134/S1070363216060177

    CAS  Article  Google Scholar 

  45. 45

    Wang, D. and Groves, J.T., Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 39, p. 15579. https://doi.org/10.1073/pnas.1315383110

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Di Tommaso, S., Rotureau, P., Crescenzi, O., and Adamo, C.,Phys. Chem. Chem. Phys., 2011, vol. 13, no. 32, p. 14636. https://doi.org/10.1039/c1cp21357a

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Adler, A.D., Longo, F.R., Kampas, F., and Kim, J., J. Inorg. Nucl. Chem., 1970, vol. 32, no. 7, p. 2443. https://doi.org/10.1016/0022-1902(70)80535-8

    CAS  Article  Google Scholar 

  48. 48

    Kuzmin, S.M., Chulovskaya, S.A., and Parfenyuk, V.I., J. Porphyrins Phthalocyanines, 2014, vol. 18, no. 7, p. 585. https://doi.org/10.1142/S108842461450031X

    CAS  Article  Google Scholar 

  49. 49

    Becker, H.G.O., et al., Organikum. Organisch-chemisches Grundpraktikum, Berlin: Wissenschaften, 1990, 18th ed.

  50. 50

    Eksperimental’nye metody khimicheskoi kinetiki (Experimental Methods of Chemical Kinetics), Emanuelʼ, N.M. and Sergeev, G.B., Eds., Moscow: Vysshaya Shkola, 1980.

Download references

Funding

This study was performed under financial support by the Russian Science Foundation (project no. 18-03-00369-a) using the equipment of the Upper Volga Regional Center for Physicochemical Studies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. V. Zaitseva.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simonova, O.R., Zdanovich, S.A., Zaitseva, S.V. et al. Kinetic Study of the Redox Properties of [5,10,15,20-Tetrakis(2,5-dimethoxyphenyl)porphyrinato]cobalt(II) in the Reaction with Hydrogen Peroxide. Russ J Gen Chem 90, 863–869 (2020). https://doi.org/10.1134/S1070363220050175

Download citation

Keywords:

  • cobalt porphyrin
  • hydrogen peroxide
  • redox reaction