Synthesis and Structure of New Aminouracilindolones

Abstract

New derivatives of aminouracilindolone have been prepared and their structure has been studied. The reaction of 2-chloro-1H-indole-3-carbaldehyde and its N-substituted analogs with 6-aminouracil has not led to the derivatives of uracilpyrimidinindole but has been accompanied by the chlorine atom substitution with a hydroxyl group, followed by the formation of an earlier unknown aminouracilindolone. Structure of one of the obtained compounds has been established by single-crystal X-ray diffraction analysis.

This is a preview of subscription content, log in to check access.

Scheme
Fig. 1.
Fig. 2.
Scheme

REFERENCES

  1. 1

    Corey, E.J., Czako, B., and Kurti, L., Molecules and Medicine, Hoboken: Wiley, 2007. https://doi.org/10.1002/bmb.20179

  2. 2

    Pozharskii, A.F., Soldatenkov, A.T., and Katritzky, A.R., Heterocycles in Life and Society: an Introduction to Heterocyclic Chemistry, Biochemistry and Applications, Chichester: Wiley, 2011. https://doi.org/10.1002/9781119998372

  3. 3

    Foote, K.M., Blades, K., Cronin, A., Fillery, S., Guichard, S.S., Hassall, L., Hickson, I., Jacq, X., Jewsbury, P.J., and Mc-Guire, T.M., J. Med. Chem., 2013, vol. 56, p. 2125. https://doi.org/10.1021/jm301859s

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Kondreddi, R.R., Jiricek, J., Rao, S.P., Lakshminarayana, S.B., Camacho, L.R., Rao, R., Herve, M., Bifani, P., Ma, N.L., Kuhen, K., Goh, A., Chatterjee, A.K., Dick, T., Diagana, T.T., Manjunatha, U.H., and Smith, P.W., J. Med. Chem., 2013, vol. 56, p. 8849. https://doi.org/10.1021/jm4012774

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Yeung, K.S., Qiu, Z., Xue, Q., Fang, H., Yang, Z., Zadjura, L., D’Arienzo, C., Eggers, B.J., Riccardi, K., Shi, P.Y., Gong, Y.F., Browning, M.R., Gao, Q., Hansel, S., Santone, K., Lin, P.F, Meanwell, N.A., and Kadow, J.F., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 198. https://doi.org/10.1016/j.bmcl.2012.10.115

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Fatahala, S., Khedr, M.A., and Mohamed, M.S., Acta. Chim. Slov., 2017, vol. 64, p. 865. https://doi.org/10.17344/acsi.2017.3481

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Silveira, C.C., Mendes, S.R., Soares, J.R., Martinez, D.M., and Savegnago, L., Tetrahedron Lett., 2013, vol. 54, p. 4926. doi.org/10.1016/j.tetlet.2013.07.004

    CAS  Article  Google Scholar 

  8. 8

    Santillan, A.Jr., McClure, K.J., Allison, B.D., Lord, B., Boggs, J.D., Morton, K.L., Everson, A.M., Nepomuceno, D., Letavic, M.A., Lee-Dutra, A., Lovenberg, T.W., Carruthers, N.I., and and Grice, C.A., Bioorg. Med. Chem. Lett., 2010, vol. 20, p. 6226. https://doi.org/10.1016/j.bmcl.2010.08.103

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Murinov, Yu.I., Grabovskii, S.A., and Kabal’nova, N.N., Russ. Chem. Bull., 2019, vol. 68, no. 5, p. 946. https://doi.org/10.1007/s11172-019-2505-4

    CAS  Article  Google Scholar 

  10. 10

    Kundu, N.G., Das, P., Balzarini, J., and De Clercq, E., Bioorg. Med. Chem., 1997, vol. 5, p. 2011. https://doi.org/10.1016/S0968-0896(97)00114-4

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Gazivoda, T., Raić-Malić, S., Marjanović, M., Kralj, M., Pavelić, K., Balzarini, J., De Clercq, E., and Mintas, M., Bioorg. Med. Chem., 2007, vol. 15, p. 749. https://doi.org/10.1016/j.bmc.2006.10.046

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Design of Hybrid Molecules for Drug Development, Decker, M., Ed., Amsterdam: Elsevier, 2017.

  13. 13

    Suzdalev, K.F., Babakova, M.N., Kartsev, V.G., and Krasnov, K.A., Heterocycles, 2015, vol. 91, no. 1, p. 64. https://doi.org/10.3987/COM-14-13135

    CAS  Article  Google Scholar 

  14. 14

    Suzdalev, K.F., Vikrischuk, N.I., Prikhodko, K.A., Shasheva, E.Yu., Kurbatov, S.V., Bogus, S.K., and GalenkoYaroshevsky, P.A., Сhem. Heterocycl. Compd., 2016, vol. 52, p. 303. https://doi.org/10.1007/s10593-016-1882-y

    CAS  Article  Google Scholar 

  15. 15

    Sheldrick, G.M., SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA, 2000.

Download references

Funding

This study was performed in the scope of the State Task (no. 0089-2019-0013, V.V. Tkachev, G.V. Shilov). The experiments were performed using the equipment of the Center for Collective Usage “Molecular Spectroscopy” of Southern Federal University and the Educational-Research Laboratory of Resonance Spectroscopy, Department of Chemistry of Natural and High-Molecular Compounds, Southern Federal University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. I. Vikrishchuk.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vikrishchuk, N.I., Tkachev, V.V., Popov, L.D. et al. Synthesis and Structure of New Aminouracilindolones. Russ J Gen Chem 90, 799–803 (2020). https://doi.org/10.1134/S1070363220050060

Download citation

Keywords:

  • aminouracil
  • 2-chloro-1H-indole-3-carbaldehyde
  • nucleophiles