The Interaction of Maleic Anhydride, N-Vinylpyrrolidone, and Their Mixture with 2,2-Diphenyl-1-picrylhydrazyl


Spectrophotometry studies have shown that N-vinylpyrrolidone and/or maleic anhydride interact with 2,2-diphenyl-1-picrylhydrazyl radical in a solution. Thermochemical parameters of the most probable reactions involving these compounds have been estimated by means of the PM6 and B3LYP/6-31+G(d) (gas phase) density functional theory methods. It has been suggested that the stable radical is attached to the monomer molecule, the resulting radical being involved in the chain growth reactions. Termination via the oligomeric radicals recombination is the most probable.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Kamada, H., Tsutsumi, Y., Yoshioka, Y., Yamamoto, Y., Kodaira, H., Tsunoda, S., Okamoto, T., Mukai, Y., Shibata, H., Nakagawa, S., and Mayumi, T., Clin. Cancer Res., 2004, vol. 10, no. 7, p. 2545.

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Popescu, I., Suflet, D.M., Pelin, I.M., and Chiţanu, G.C., Rev. Roum. Chim., 2011, vol. 56, no. 3, p. 173.

    CAS  Google Scholar 

  3. 3

    Zaitseva, V.V., Tyurina, T.G., and Zaitsev, S.Yu., Russ. J. Org. Chem., 2015, vol. 51, no. 8, p. 1071.

    CAS  Article  Google Scholar 

  4. 4

    Tyurina, T.G., Zarechnaya, O.M., Zaitseva, V.V., and Zaitsev, S.Yu., Russ. J. Gen. Chem., 2017, vol. 87, no. 3, p. 489.

    Article  Google Scholar 

  5. 5

    Molyneux, P., Songklanakarin J. Sci. Technol., 2004, vol. 26, no. 2, p. 211.

    CAS  Google Scholar 

  6. 6

    Rozantsev, E.G., Gol’dfein, M.D., and Trubnikov, A.V., Russ. Chem. Rev., 1986, vol. 55, no. 11, p. 1070.

    Article  Google Scholar 

  7. 7

    Litwinienko, G. and Ingold, K.U., J. Org. Chem., 2004, vol. 69, no. 18, p. 5888.

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Fehérvári, F., Azori, M., Földes-Berezsnich, T., and Tudös, F., Polymer Bull., 1987, vol. 18, p. 225.

    Article  Google Scholar 

  9. 9

    Hu, Z. and Zhang, Z., Macromolecules, 2006, vol. 39, p. 1384.

    CAS  Article  Google Scholar 

  10. 10

    Osugi, J. and Sasaki, M., Rev. Phys. Chem. Japan, 1964, vol. 34, no. 2, p. 65.

    CAS  Google Scholar 

  11. 11

    Нogg, J.S., Lohmаnn, D.Н., and Russel, K.E., Can. J. Chem., 1961, vol. 39, p. 1588.

    Article  Google Scholar 

  12. 12

    Goupy, P., Dufour, C., Loonis, M., and Dangles, O., J. Agric. Food Chem., 2003, vol. 51, no. 3, p. 615.

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Momen Heravi, M., Haghi, B., Morsali, A., Ardalan, P., and Ardalan, T., J. Chem. Health Risks., 2012, vol. 2, no. 2, p. 43.

    Article  Google Scholar 

  14. 14

    Foti, M.C., Daquino, C., and Geraci, C., J. Org. Chem., 2004, vol. 69, no. 7, p. 2309.

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Chat, O.A., Najar, M.H., and Dar, A.A., Colloids Surf. (A), 2013, vol. 436, p. 343.

    CAS  Article  Google Scholar 

  16. 16

    Bernardi, A.P.M., López-Alarcón, C., Aspee, A., Rech, S., Von Poser, G.L., Bride, R., and Lissp, E., J. Chil. Chem. Soc., 2007, vol. 52, no. 4, p. 1326.

    CAS  Article  Google Scholar 

  17. 17

    Moţ, A.C., Silaghi-Dumitrescu, R., and Sârbu, C., J. Food Compost. Anal., 2011, vol. 24, no. 4–5, p. 516.

    CAS  Article  Google Scholar 

  18. 18

    Fechine, G.J.M., Barros, J.A.G., and Catalani, L.H., Polymer, 2004, vol. 45, p. 4705.

    CAS  Article  Google Scholar 

  19. 19

    Ng, L.-T., Swami, S., and Jönsson, S., Radiat. Phys. Chem., 2004, vol. 69, p. 321.

    CAS  Article  Google Scholar 

  20. 20

    Joshi, R., Macromol. Chem., 1962, vol. 53, p. 33.

    CAS  Article  Google Scholar 

  21. 21

    Hristea, E.N., Hillebrand, M., Caproiu, M.T., Caldararu, H., Constantinescu, T., and Balaban, A.T., Arkivoc, 2002, p. 123.

  22. 22

    Ionita, P., Chem. Pap., 2005, vol. 59, no. 1, p. 11.

    CAS  Google Scholar 

  23. 23

    Hristea, E.N., Caproiu, M.T., Pencu, G., Hillebrand, M., Constantinescu, T., and Balaban, A.T., Int. J. Mol. Sci., 2006, vol. 7, no. 5, p. 130.

    CAS  Article  Google Scholar 

  24. 24

    Stewart, J.J.P., MOPAC2012, Stewart Computational Chemistry, Colorado Springs, CO, USA.

  25. 25

    Young, D., Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, New York: Wiley, 2001, p. 227.

  26. 26

    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, no. 11, p. 1347.

    CAS  Article  Google Scholar 

Download references


Authors are grateful to L.I. Opeida for the data on the evolution of the absorbance (А520) of the solutions of mixtures of maleic anhydride and DPPH· with time.

Author information



Corresponding author

Correspondence to T. G. Tyurina.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tyurina, T.G., Zarechnaya, O.M., Zaitseva, V.V. et al. The Interaction of Maleic Anhydride, N-Vinylpyrrolidone, and Their Mixture with 2,2-Diphenyl-1-picrylhydrazyl. Russ J Gen Chem 90, 773–781 (2020).

Download citation


  • N-vinylpyrrolidone
  • maleic anhydride
  • 2,2-diphenyl-1-picrylhydrazyl
  • spectrophotometry
  • B3LYP/6-31+G(d) simulation