Mercuration and Telluration of 2-Fluoro-5-nitroaniline: Synthesis, Antibacterial, and Computational Study

Abstract

New derivatives of organotellurium and organomercury compounds have been synthesized in the reaction of 2-fluoro-5-nitroaniline with mercuric acetate and further with tellurium(IV) tetrabromide. Reaction of (4-amino-5-fluoro-2-nitrophenyl)tellurium(IV) tribromide with 4-hydroxyphenyl mercury(II) chloride gives asymmetrical diaryltellurium(IV) dibromide, whereas reaction of (4-amino-5-fluoro-2-nitrophenyl)mercury(II) chloride with phenol and 4-hydroxy benzaldehyde produces a new aryl mercury(II) chloride that contains the azomethine and azo groups. Reaction of aryl mercury(II) chloride with tellurium(IV) tetrabromide results in aryaltellurium(IV) tribromide furnished by the azomethine and azo groups. Reduction of unsymmetrical diaryltellurium(IV) dibromide and aryltellurium(IV) tribromide by hydrazine hydrate leads to the corresponding asymmetrical diaryltelluride and diarylditelluride. Structures of the new synthesized compounds are supported by FT-IR and 1H NMR spectra. Anti-bacterial activity of the new products has been tested against Klebsiella pneumonia Proteus, Escherichia coli, Pseudomonas spp., and Staphylococcus aureus. The compounds are characterized as highly active. The molecular structure level and energies of compounds have been computed through the Density Functional Theory (DFT).

This is a preview of subscription content, log in to check access.

Scheme 1.

REFERENCES

  1. 1

    Pop, A., Silvestru, C., and Silvestru, A., Phys. Sci. Rev., 2018, vol. 4, no. 5, p. 40. https://doi.org/10.1515/psr-2018-0061

    Article  Google Scholar 

  2. 2

    Jirau-Collon, H., Gonzalez-Parrilla, L., Martinez-Jimenez, J., Adam, W., and Jimenez-Velez, B., Int. J. Environ. Res. Public Health., 2019, vol. 16, p. 1036. https://doi.org/10.3390/ijerph16061036

    CAS  Article  Google Scholar 

  3. 3

    Al-Masoudi, W.A., Al-Asadi, R.H., Othman, R.M., and Al-Masoudi, N.A., Eur. J. Chem., 2015, vol. 6, p. 374. https://doi.org/10.5155/eurjchem.6.4.374-380.1254

    CAS  Article  Google Scholar 

  4. 4

    Wei, C., Lu, W., and Huaping, X., Nano Today, 2015, vol. 10, p. 717. https://doi.org/10.1021/ar4000339

    CAS  Article  Google Scholar 

  5. 5

    Al-Asadi, R.H., Al-Masoudi, W.A., and Abdu Al-Rassol, K.S., Asian J. Chem., 2016, vol. 28, p. 1171. https://doi.org/10.14233/ajchem.2016.19139

    CAS  Article  Google Scholar 

  6. 6

    Cunha, R.L., Gouvea, I.E., and Juliano, L., Acad. Bras. Sci., 2009, vol. 81, p. 393. https://doi.org/10.1590/s0001-37652009000300006

    CAS  Article  Google Scholar 

  7. 7

    Cunha, R.L., Urano, M.E., Chagas, J.R. Almeida, P.C., Bincoletto, C., and Comasseto, J.V., Bioorg. Med. Chem. Lett., 2005, vol. 15, no. 3 p. 755. https://doi.org/10.1016/j.bmcl.2004.11.012

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Grifin, S., Sarfraz, M., Hartman, S.F., Pinnapireddy, S.R., Nasim, M.J., Keck, U.C., and Jacob, C., Antioxidant, 2018, vol. 7, p. 23. https://doi.org/10.3390/antiox7020023

    CAS  Article  Google Scholar 

  9. 9

    Bandeira, P.T., Dalmolin, M.C., de Oliveira, M.M., Nunes, K.C., Garcia, F.P., Nakamura, C.V., de Oliveira, A.R.M., and Piovan, L., Bioorg. Med. Chem., 2019, vol. 27, no. 2, p. 410. https://doi.org/10.1016/j.bmc.2018.12.017

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Dembitsky, V.M., Gloriozov, T.A., and Poroikov, V.V., J. Appl. Pharam. Sci., 2017, vol. 7, p. 184. https://doi.org/10.7324/JAPS.2017.71129

    CAS  Article  Google Scholar 

  11. 11

    Ronconi, L. and Sadler, P.J., Coor. Chem. Res, 2008, vol. 252, p. 2239. https://doi.org/10.1016/j.ccr.2008.01.016

    CAS  Article  Google Scholar 

  12. 12

    Benjamin, S., Seminars in Cancer Biol., 2011, vol. 22, p. 60. https://doi.org/10.1016/j.semcancer.2011.12.003

    CAS  Article  Google Scholar 

  13. 13

    Vazquez-Tato, M.P., Mena-Menendez, A., Feas, X., and Seijas, J.A., Int. J. Mol. Sci., 2014, vol. 15, p. 3287. https://doi.org/10.3390/ijms15023287

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Al-Asadi, R.H., Fahad, T.A., and Saeed, B.A., Synthesis, Biological, and Theoretical Study of Organotellurium Compounds, Noor Publishing, 2017.

  15. 15

    Al-Rubaie, A.Z., Al-Masoudi, W.A., Al-Jadaan, S.A.N., Jalbout, A.F., and Hameed, A.J., Heteroatom. Chem., 2008, vol. 19, p. 307. https://doi.org/10.1002/hc.20437

    CAS  Article  Google Scholar 

  16. 16

    Al-Fregi, A.A. and Adnan, M.A., Eur. J. Chem., 2016, vol. 7, p. 195. https://doi.org/10.5155/eurjchem.7.2.195-200.1409

    CAS  Article  Google Scholar 

  17. 17

    Al-Asadi, R.H., Fahad, T.A., Saeed, B.A., and Al-Masoudi, W.A., J . Advan. Chem., 2014, vol. 8, p. 1464. https://doi.org/10.24297/jac.v8i1.4027

    Article  Google Scholar 

  18. 18

    Menon, S.C., Singh, H.B., Patal, R.P., Das, K., and Butcher, R., J. Organometallics,1997, vol. 16, p. 563. https://doi.org/10.1021/om9604280

  19. 19

    Cobbledick, R.E., Einstein, F.W.B, McWhinnie, W.R., and Musa, F.H., J. Chem. Res.,1979, vol. 145, p. 1901.

  20. 20

    Silverstien, R.M., Webster, F.X., and Kiemle, D.J., Spectrometric Identification of Organic Chemistry Compounds, New York: Wiley, 2005.

  21. 21

    Ebenso, E.E., Isabirye, D.A., and Eddy, N.O., Int. J. Mol. Sci., 2010, vol. 11, p. 2473. https://doi.org/10.3390/ijms11062473

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Botelho, A.L., Shin, Y., Liu, J., and Lin, X., PLoS ONE, 2014, vol. 9, p. 86370. https://doi.org/10.1371/journal.pone.0086370

    CAS  Article  Google Scholar 

  23. 23

    Al-Asadi, R.H., Orbital: Elect. J. Chem., 2019, vol. 11, no. 7, p. 402. https://doi.org/10.17807/orbital.v11i7.1211

    CAS  Article  Google Scholar 

  24. 24

    Becke, A.D., J. Chem. Phys., 1997, vol. 107, p. 8554. https://doi.org/10.1063/1.475007

    CAS  Article  Google Scholar 

  25. 25

    Al-Asadi, R.H., Saeed, B.A., and Fahad, T.A., Eur. J. Chem., 2015, vol. 6, p. 248. https://doi.org/10.5155/eurjchem.6.3.248-253.1060

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the Department of Chemistry, Faculty of Education of Pure Sciences, Basrah University, Iraq for extending all facilities including laboratories and measurements of FT-IR spectra.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. H. Al-Asadi.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Asadi, R.H., Mohammed, M.K. & Dhaef, H.K. Mercuration and Telluration of 2-Fluoro-5-nitroaniline: Synthesis, Antibacterial, and Computational Study. Russ J Gen Chem 90, 703–709 (2020). https://doi.org/10.1134/S1070363220040222

Download citation

Keywords:

  • organotellurium
  • organomercury
  • antibacterial
  • computational study