Influence of the Mechanism of the Initial Stages of the Ligand Decomposition on the Initiating Ability of Cobalt(III) Ammine Tetrazolate Complexes

Abstract

The results of quantum chemical calculations for isolated molecules of pentaammine-(5-cyano-2H-tetrazolato-N2)cobalt(III) perchlorate, pentaammine-(5-nitrotetrazolato-N2)cobalt(III) perchlorate, tetraammine-cis-bis(5-nitro-2H-tetrazolato-N2)cobalt(III) perchlorate, and tetraammine-cis-bis(1-methyl-5-aminotetrazolo-N3,N4)cobalt(III) perchlorate, as well as of the products of their possible initial decomposition stage were presented. The energetics and pathways of such reactions were determined. For the first time with the use of quantum chemical calculations it was shown that the decomposition of cobalt amminates can start with destruction of the tetrazole ligand and elimination of molecular nitrogen, rather than with dissociation of the coordinated ammonia molecule from the inner sphere of the cobalt(III) complex. The activation and dissociation energies of these processes were determined.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Matyáš, R. and Pachman, J., Primary Explosives, Heidelberg: Springer, 2013. https://doi.org/10.1007/431

  2. 2

    Klapoetke, T.M., Chemistry of High-Energetic Materials, Berlin: Walter de Gruyter, 2017.

  3. 3

    Brown, W.E., Dollimore, D., and Galway, A.K., Reactions in the Solid State, in Comprehensive Chemical Kinetics, Bamford, C.H. and Tipper, C.F., Eds., Amsterdam: Elsevier, 1980, vol. 22.

  4. 4

    Ilyushin, M.A., Shugalei, I.V., and Sudarikov, A.M., Vysokoenergeticheskie metallokompleksy. Sintez, svoistva, primenenie (High-Energy Metal Complexes: Synthesis, Properties, Application), Saarbrucken: LAP Lambert Academic Publishing RU, 2017.

  5. 5

    Ilyushin, M.A. and Shugalei, I.V., in Handbook of Ecomaterials, Martínez, L.M.T., Kharissova, O.V., and Kharisov, B.I., Eds., Cham: Springer Nature Switzerland, 2019, p. 3433. https://doi.org/10.1007/978-3-319-68255-6_46

  6. 6

    Smirnov, A.V., Fedotov, S.A., Ageev, M.V., Vedernikov, Yu.N., and Ilyushin, M.A., Boepripasy Vysokoenerg. Kond. Sist., 2018, no. 1, p. 31

    Google Scholar 

  7. 7

    Bates, L.R., Proc. 13 Symp. on Explosives and Pyrotechnics, Hilton Head Island (USA), 1986, p. III/1.

  8. 8

    Ostrovskii, V.A., Popova, E.A., and Trifonov, R.E., Adv. Heterocycl. Chem., 2017, vol. 123, p. 1. https://doi.org/10.1016/bs.aihch.2016.12.003

    CAS  Article  Google Scholar 

  9. 9

    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E.Jr., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., and Cioslowski, J., Gaussian 09, Revision A1, Gaussian Inc., Wallingford CT, 2009.

  10. 10

    Golubev, V.K. and Ilyushin, M.A., Proc. 20 Seminar “New Trends in Research of Energetic Materials,” Pardubice (Czech Republic), 2017, part 1, p. 580.

  11. 11

    Golubev, V.K. and Ilyushin, M.A., Russ. J. Gen. Chem., 2017, vol. 87, no. 2, p. 286. https://doi.org/10.1134/S1070363217020220

    CAS  Article  Google Scholar 

  12. 12

    Golubev, V.K. and Ilyushin, M.A., Proc. 19 Seminar “New Trends in Research of Energetic Materials,” Pardubice (Czech Republic), 2017, part 2, p. 535.

  13. 13

    Ilyushin, M.A., Smirnov, A.V., Shugalei, I.V., and Golubev, V.K., Proc. 20 Seminar “New Trends in Research of Energetic Materials,” Pardubice (Czech Republic), 2017, part 2, p. 701.

  14. 14

    Ilyushin, M.A., Tverjanovich, Yu.S., Tverjanovich, A.S., Aver’yanov, A.O., Smirnov, A.V., and Shugalei, I.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 11, p. 2600. https://doi.org/10.1134/S1070363217110147

    CAS  Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project nos. 16-29-01056-ofi_m, 17-03-00566).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Ilyushin.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ilyushin, M.A., Shugalei, I.V., Tverjanovich, A.S. et al. Influence of the Mechanism of the Initial Stages of the Ligand Decomposition on the Initiating Ability of Cobalt(III) Ammine Tetrazolate Complexes. Russ J Gen Chem 90, 640–647 (2020). https://doi.org/10.1134/S1070363220040131

Download citation

Keywords:

  • quantum chemical calculation
  • decomposition
  • ammine tetrazolate complexes
  • initiating ability