Synthesis, Structure and Biological Activity of Coordination Compounds of Copper, Nickel, Cobalt, and Iron with Ethyl N'-(2-Hydroxybenzylidene)-N-prop-2-en-1-ylcarbamohydrazonothioate

Abstract

N-(Prop-2-en-1-yl)hydrazonocarbothioamide reacts with iodoethane in methanol with further addition of 2-hydroxybenzaldehyde to form hydroiodide of carbamohydrazonothioate (HL·HI). The coordination compounds were obtained by interaction of HL or HL·HI with copper, nickel, cobalt and iron salts CuLХ·nH2O [X = Cl, Br, NO3; n = 0–1], Ni(L)2·HI·CH3OH, Сo(L)2X [X = I, NO3] and Fe(L)2NO3. The structures of three complexes were established by single crystal X-ray analysis. The synthesized complexes exhibit selective antimicrobial and antifungal activity against a series of standard microorganisms and fungi in the concentration range of 30–500 μg/mL. In addition, nickel and iron complexes selectively inhibit the growth and proliferation of cancer cells and do not adversely affect normal cells.

This is a preview of subscription content, log in to check access.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Scheme

REFERENCES

  1. 1

    Beraldo, H. and Gambino, D., Mini Rev. Med. Chem., 2004, vol. 4, no. 1, p. 31. https://doi.org/10.2174/1389557043487484

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Saryan, L.A., Ankel, E., Krishnamurti, C., Petering, D.H., and Elford, H., J. Med. Chem., 1979, vol. 22, no. 10, p. 1218. https://doi.org/10.1021/jm00196a013

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Pahontu, E., Fala, V., Gulea, A., Poirier, D., Tapcov, V., and Rosu, T., Molecules, 2013, vol. 18, no. 8, p. 8812. https://doi.org/10.3390/molecules18088812

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Turk, S.R., Shipman, C., and Drach, J.C., J. Gen. Virology, 1986, vol. 67, no. 8, p. 1625. https://doi.org/10.1099/0022-1317-67-8-1625

    CAS  Article  Google Scholar 

  5. 5

    Yamazaki, C., Canad. J. Chem., 1975, vol. 53, no. 4, p. 610. https://doi.org/10.1139/v75-085

    CAS  Article  Google Scholar 

  6. 6

    Botoshanskii, M., Bourosh, P.N., Revenko, M.D., Korzha, I.D., Simonov, Y.A., and Panfilie, T., J. Struct. Chem., 2009, vol. 50, no. 1, p. 181. https://doi.org/10.1007/s10947-009-0026-y

    CAS  Article  Google Scholar 

  7. 7

    Leovac, V.M., Češljević, V.I., Vojinović-Ješić, L.S., Divjaković, V., Jovanović, L.S., Szécsényi, K.M., and Rodić, M.V., Polyhedron, 2009, vol. 28, no. 16, p. 3570. https://doi.org/10.1016/j.poly.2009.07.045

    CAS  Article  Google Scholar 

  8. 8

    Rodić, M.V., Leovac, V.M., Jovanović, L.S., Vojinović Ješić, L.S., Divjaković, V., and Češljević, V.I., Polyhedron, 2012, vol. 46, no. 1, p. 124. https://doi.org/10.1016/j.poly.2012.08.011

    CAS  Article  Google Scholar 

  9. 9

    Petrovic, D.M., Petrovic, A.F., Leovac, V.M., and Lukic, S.R., J. Thermal Anal., 1994, vol. 41, no. 5, p. 1165. https://doi.org/10.1007/bf02547205

    CAS  Article  Google Scholar 

  10. 10

    Malik, M. and Phillips, D., Austral. J. Chem., 1974, vol. 27, no. 5, p. 1133. https://doi.org/10.1071/ch9741133

    CAS  Article  Google Scholar 

  11. 11

    Takjoo, R., Mague, J.T., Akbari, A., and Ahmadi, M., J. Coord. Chem., 2013, vol. 66, no. 22, p. 3915. https://doi.org/10.1080/00958972.2013.856420

    CAS  Article  Google Scholar 

  12. 12

    Pahontu, E., Usataia, I., Graur, V., Chumakov, Yu., Petrenko, P., Gudumac, V., and Gulea, A., Appl. Organometal. Chem., 2018, vol. 32, no. 12, p. 4544. https://doi.org/10.1002/aoc.4544

    CAS  Article  Google Scholar 

  13. 13

    Türkkan, B., Sarıboğa, B., and Sarıboğa, N., Transition Metal Chem., 2011, vol. 36, no. 6, p. 679. https://doi.org/10.1007/s11243-011-9518-7

    CAS  Article  Google Scholar 

  14. 14

    Şahin, M., Bal-Demirci, T., Pozan-Soylu, G., and Ülküseven, B., Inorg. Chim. Acta, 2009, vol. 362, no. 7, p. 2407. https://doi.org/10.1016/j.ica.2008.10.036

    CAS  Article  Google Scholar 

  15. 15

    CrysAlisPro, Version 1.171.33.52 (release 06-11-2009 CrysAlis171.NET). Oxford Diffraction Ltd.

  16. 16

    Sheldrick, G.M., Acta Crystallogr. (A), 2007, vol. 64, no. 1, p. 112. https://doi.org/10.1107/s0108767307043930

    Article  Google Scholar 

  17. 17

    Spek, A.L., J. Appl. Crystallogr., 2003, vol. 36, no. 1, p. 7. https://doi.org/10.1107/s0021889802022112

    CAS  Article  Google Scholar 

  18. 18

    Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., and Van De Streek, J., J. Appl. Crystallogr., vol. 39, no. 3, p. 453. https://doi.org/10.1107/s002188980600731x

  19. 19

    Gulea, A., Poirier, D., Roy, J., Stavila, V., Bulimestru, I., Tapcov, V., and Popovschi, L., J. Enzyme Inhibition Med. Chem., 2008, vol. 23, no. 6, p. 806. https://doi.org/10.1080/14756360701743002

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express gratitude to O.S. Garbuz for the help in performance of biological tests of synthesized substances.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. О. Graur.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gulea, А.P., Usataia, I.S., Graur, V.О. et al. Synthesis, Structure and Biological Activity of Coordination Compounds of Copper, Nickel, Cobalt, and Iron with Ethyl N'-(2-Hydroxybenzylidene)-N-prop-2-en-1-ylcarbamohydrazonothioate. Russ J Gen Chem 90, 630–639 (2020). https://doi.org/10.1134/S107036322004012X

Download citation

Keywords:

  • coordination compounds
  • carbamohydrazonothioates
  • antimicrobial activity
  • anticancer activity