Skip to main content
Log in

Complexation of 2,3-Dimethyl-5-hydroxy-6-aminopyrimidin-4(3H)-one with Copper(II) Ions in Nonaqueous Solutions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Complex formation of 2,3-dimethyl-5-hydroxy-6-aminopyrimidine-4(3H)-one with copper(II) ions in nonaqueous solutions has been studied by means of electron, NMR, and IR spectroscopy as well as mass spectrometry. Sequential formation of tetra- and pentacoordinated copper(II) complexes with mono- and bidentate ligand coordination has been observed. The complexes composition has been determined by spectrophotometry using the molar ratios method. Donor centers of the ligand involved in coordination with copper(II) ions have been determined, and the complexes formation constant have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holm, R.H., Kennepohl, P., and Solomon, E.I., Chem. Rev., 1996, vol. 96, no. 7, p. 2239. https://doi.org/10.1021/cr9500390

    Article  CAS  Google Scholar 

  2. Bissaro, B., Røhr E.K., Müller, G., Chylenski, P., Skaugen, M., Forsberg, Z., Horn, S.J., Vaaje-Kolstad, G., and Eijsink, V.G., Nature Chem. Biol., 2017, vol. 13, p. 1123. https://doi.org/10.1038/nchembio.2470

    Article  CAS  Google Scholar 

  3. Chowdhury, B., Maji, M., and Biswas, B., J. Chem. Sci., 2017, vol. 129, no. 10, p. 1627. https://doi.org/10.1007/s12039-017-1379-y

    Article  CAS  Google Scholar 

  4. Solomon, E.I., Heppner, D.E., Johnston, E.M., Ginsbach, J.W, Cirera, J., Qayyum, M., Kieber-Emmons, M.T., Kjaergaard, C.H., Hadt, R.G., and Tian, L., Chem. Rev., 2014, vol. 114, p. 3659. https://doi.org/10.1021/cr400327t

    Article  CAS  Google Scholar 

  5. Liu, J.J., Diaz, D.E., Quist, D.A., and Karlin, K.D., Isr. J. Chem., 2017, vol. 56, nos. 9–10, p. 1. https://doi.org/10.1002/ijch.201600025

    Google Scholar 

  6. Ribeiro da Silva, M.A.V., Amaral, L.M.P.F., and Szterner, P., J. Chem. Thermodyn., 2011, vol. 43, p. 1763. https://doi.org/10.1016/j.jct.2011.06.003

    Article  CAS  Google Scholar 

  7. Murinov, Yu.I., Mishinkin, V.Yu., Akchurina, O.V., Grabovskii, S.A., and Kabal’nova, N.N., Russ. J. Gen. Chem., 2017, vol. 87, no. 8, p. 1667. https://doi.org/10.1134/S1070363217080047

    Article  CAS  Google Scholar 

  8. Mishinkin, V.Yu., Grabovskii, S.A., Kabal’nova, N.N., and Murinov, Yu.I., Russ. J. Gen. Chem., 2017, vol. 87, no. 7, p. 1542. https://doi.org/10.1134/S1070363217070167

    Article  CAS  Google Scholar 

  9. Mishinkin, V.Yu., Grabovskii, S.A., Kabal’nova, N.N., and Murinov, Yu.I., Russ. J. Gen. Chem., 2019, vol. 89, no. 3, p. 405. https://doi.org/10.1134/S107036321903006X

    Article  CAS  Google Scholar 

  10. Lever, A.B, Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1984. 863 p.

    Google Scholar 

  11. Abbas, G., Mir, M., Hassan, A., Irfan, A., Mariya-Al-Rashida, and Wu, G., J. Struct. Chem., 2015, vol. 56, no. 1, p. 92. https://doi.org/10.1134/S0022476615010138

    Article  CAS  Google Scholar 

  12. Derrick, J.S., Kim, Y., Tak, H., Park, K., Cho, J., Kim, S.H., and Lim, M.H., Dalton Trans., 2017, vol. 46, p. 13166. https://doi.org/10.1039/c7dt01489a

    Article  CAS  Google Scholar 

  13. Tordin, E., List, M., Monkowius, U., Schindler, S., and Knör, G., Inorg. Chim. Acta, 2013, vol. 402, p. 90. https://doi.org/10.1016/j.ica.2013.03.034

    Article  CAS  Google Scholar 

  14. Olshin, P.K., Myasnikova, O.S., Kashina, M.V., Gorbunov, A.O., Bogachev, N.A., Kompanets, V.O., Chekalin, S.V., Pulkin, S.A., Kochemirovsky, V.A., Skripkin, M.Yu., and Mereshchenko, A.S., Chem. Phys., 2018, vol. 503, p. 14. https://doi.org/10.1016/j.chemphys.2018.01.020

    Article  CAS  Google Scholar 

  15. Elleb, M., Meulemeestre, J., Schwing-Weill, M.-J., and Vierling, F., Inorg. Chem., 1982, vol. 21, p. 1477. https://doi.org/10.1021/ic00134a042

    Article  CAS  Google Scholar 

  16. Beck, M.T. and Nagypal, I., Chemistry of Complex Equilibria, Chichester: Ellis Horwood Limited, 1990.

    Google Scholar 

Download references

Funding

This study was performed in scope of the research at Ufa Institute of Chemistry, Russian Academy of Sciences (registration nos. AAAA-A17-117011910033-1, AAAA-A17-117011910035-5) using the equipment of the Center for Collective Usage “Chemistry” of Ufa Institute of Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Murinov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 10, pp. 1560–1565.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishinkin, V.Y., Grabovskii, S.A., Kabal’nova, N.N. et al. Complexation of 2,3-Dimethyl-5-hydroxy-6-aminopyrimidin-4(3H)-one with Copper(II) Ions in Nonaqueous Solutions. Russ J Gen Chem 89, 2052–2056 (2019). https://doi.org/10.1134/S1070363219100104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219100104

Keywords

Navigation