Skip to main content
Log in

Colloid and Nanosized Catalysts in Organic Synthesis: XXII. Hydrogenation of Cycloolefins Catalyzed by Immobilized Transition Metals Nanoparticles in a Three-Phase System

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The processes of unsaturated cyclic hydrocarbons hydrogenation in a three-phase gas-liquid-solid catalyst system in the presence of nanostructured nickel, cobalt, or iron catalysts in a flow reactor at 130°C and atmospheric pressure have studied. RX3Extra activated carbon, γ-Al2O3, NaX zeolite, and Purolite CT-175 cation-exchange resin have been used as supports; NaBH4 and NH2NH2·H2O were used as reducing agents. The catalytic activity of supported nanoparticles and their selectivity with respect to the product of exhaustive hydrogenation have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mokhov, V.M., Popov, Yu.V., Nebykov, D.N., Nishchik, E.V., Shcherbakova, K.V., and Zotov, Yu.L., Russ. J. Gen. Chem., 2019, vol. 89, no. 8, p. 1549. https://doi.org/10.1134/S1070363219080012

    Article  CAS  Google Scholar 

  2. Zou, J.-J., Zhang, X., Jing Kong, and Li Wang, Fuel, 2008, vol. 87, p. 3655. https://doi.org/10.1016/jfuel.2008.07.006

    Article  CAS  Google Scholar 

  3. Schmidt, A. and Schomacker, R., Ind. Eng. Chem. Res., 2007, vol. 46, p. 1677. https://doi.org/10.1021/ie0611958

    Article  CAS  Google Scholar 

  4. Mokhov, V.M., Popov, Yu.V., and Nebykov, D.N., Russ. J. Gen. Chem., 2014, vol. 84, no. 4, p. 622. https://doi.org/10.1134/S1070363214040033

    Article  CAS  Google Scholar 

  5. Canning, A.S., Jackson, S.D., Monaghan, A., and Wright, T., Catal. Today, 2006, vol. 116, no. 1, p. 22. https://doi.org/10.1016/j.cattod.2006.04.002

    Article  CAS  Google Scholar 

  6. Marin-Astorga, N., Pecchi, G., Fierro, J.L.G., and Reyes, P., J. Mol. Catal. (A), 2005, vol. 231, nos. 1–2, p. 67. https://doi.org/10.1016/j.molcata.2005.01.004

    Article  CAS  Google Scholar 

  7. Du, W.Q., Rong, Z.M., Liang, Y., Wang, Y., Lu, X.Y., Wang, Y.F., and Lu, L.H., Chin. Chem. Lett., 2012, vol. 23, no. 7, p. 773. https://doi.org/10.1016/j.cclet.2012.05.002

    Article  CAS  Google Scholar 

  8. Cram, D.J. and Allinger, N.L., J. Am. Chem. Soc., 1956, vol. 78, no. 11, p. 2518. https://doi.org/10.1021/ja01592a051

    Article  CAS  Google Scholar 

  9. Chandrasekhar, S., Narsihmulu Ch., Chandrashekar, G., and Shyamsunder, T., Tetrahedron Lett., 2004, vol. 45, no. 11, p. 2421. https://doi.org/10.1016/j.tetlet.2004.01.097

    Article  CAS  Google Scholar 

  10. Teixeira, A.P.C., Purceno, A.D., Barros, A.S., Lemos, B.R.S., Ardisson, J.D., Macedo, W.A.A., Nassor, E.C.O., Amorim, C.C., Moura, F.C.C., Hernbndez-Terrones, M.G., Portela, F.M., and Lago, R.M., Catal. Today, 2012, vol. 190, p. 133. https://doi.org/10.1016/j.cattod.2012.01.042

    Article  CAS  Google Scholar 

  11. Tian, S.H., Yan, H.W., Jing, Y.J., Zi, L.J., Chin. Chem. Lett., 2008, vol. 19, p. 102. https://doi.org/10.1016/j.cclet.2007.10.042

    Article  Google Scholar 

  12. Behr, A., Manz, V., Lux, A., and Ernst, A., Catal. Lett., 2013, vol. 143, no. 3, p. 241. https://doi.org/10.1007/s10562-013-0960-3

    Article  CAS  Google Scholar 

  13. Popov, Yu.V., Mokhov, V.M., Nebykov, D.N., Shcherbakova, K.V., and Dontsova, A.A., Russ. J. Gen. Chem., 2018, vol. 88, no. 1, p. 20. https://doi.org/10.1134/S1070363218010048

    Article  CAS  Google Scholar 

  14. Popov, Y.V., Mokhov, V.M., Neby-kov, D.N., Latyshova, S.E., Panov, A.O., Dontsova, A.A., Shirkhanyan, P.M., and Shcherbakova, K.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 12, p. 2589. https://doi.org/10.1134/S1070363216120033

    Article  CAS  Google Scholar 

  15. Popov, Yu.V., Mokhov, V.M., and Nebykov, D.N., Russ. J. Gen. Chem., 2014, vol. 84, no. 3, p. 444. https://doi.org/10.1134/S1070363214030062

    Article  CAS  Google Scholar 

  16. Fragale, C., Gargano, M., Ravasio, N., Rossi, M., and Santo, I., J. Mol. Catal., 1984, vol. 24, no. 2, p. 211. https://doi.org/10.1016/0304-5102(84)85132-9

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project 18-33-00183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Nebykov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 10, pp. 1479–1485.

For communication XXI, see [1]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nebykov, D.N., Popov, Y.V., Mokhov, V.M. et al. Colloid and Nanosized Catalysts in Organic Synthesis: XXII. Hydrogenation of Cycloolefins Catalyzed by Immobilized Transition Metals Nanoparticles in a Three-Phase System. Russ J Gen Chem 89, 1985–1989 (2019). https://doi.org/10.1134/S1070363219100013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219100013

Keywords

Navigation