Skip to main content
Log in

Synthesis of 1,3,3,5,5-Penta[1-(2,2-dimethyl-1,3-dioxolan-4-yl)methoxy]-1-[(1H-1,2,3-triazol-4-yl)alkoxy]cyclotriphosphazenes

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Based on 1,3,3,5,5-penta[1-(2,2-dimethyl-1,3-dioxolan-4-yl)methoxy]-1-chlorocyclotriphosphazene, a series of hybrid compounds was obtained by two-step synthesis. In the molecules of the compounds obtained, hydrophobic organic residues are attached to the cyclotriphosphazene nucleus via a linker. A dialkyl substituted 1,2,3-triazole synthesized by click-chemistry methodology from acetylenic cyclotriphosphazene derivatives and organic azides in the presence of Cu(I) can be used as a linker connecting pentadioxolane-substituted phosphazene core. The reaction proceeds regioselectively with the formation of 1,4-disubstituted 1,2,3-triazoles only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steed, J.W. and Atwood, J.L., Supramolecular Chemistry, Chichester: J. Wiley & Sons, 2000.

    Google Scholar 

  2. Teasdale, I. and Brüggemann, O., Polymers, 2013, vol. 5, p. 161. doi https://doi.org/10.3390/polym5010161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kedik, S.A., Zhavoronok, E.S., Sedishev, I.P., Panov, A.V., Suslov, V.V., Petrova, E.A., Sapel’nikov, M.D., Shatalov, D.O., and Eremin, D.V., Razrabotka i registratsiya lekarstvennykh sredstv, 2013, no. 4, p. 22.

  4. Ogueri, K.S., Ivirico, J.L.E., Nair, L.S., Allcock, H.R., and Laurencin, C.T., Regen. Eng. Transl. Med., 2017, vol. 3, no. 1, p. 51. doi https://doi.org/10.1007/s40883-017-0026-y

    Article  Google Scholar 

  5. Ullah, R.S., Wang, L., Yu, H., Abbasi, N.M., Akram, M., Abdin, Z., Saleem, M., Haroon, M., and Khan, R.U., RSC Adv., 2017, vol. 7, no. 38, p. 23363. doi https://doi.org/10.1039/c6ra27103k

    Article  CAS  Google Scholar 

  6. Ullah, R.S., Wang, L., Yu, H., Haroon, M., Elshaarani, T., Naveed, K.R., Fahad, S., Khan, A., Nazir, A., Xia, X., and Teng, L., J. Mater. Sci., 2019, vol. 54, no. 1, p. 745. doi https://doi.org/10.1007/s10853-018-2843-x

    Article  CAS  Google Scholar 

  7. Tian, Zh., Hess, A., Fellin, C.R., Nulwala, H., and Allcock, H.R., Macromolecules, 2015, vol. 48, no. 13, p. 4301. doi https://doi.org/10.1021/acs.macromol.5b00946

    Article  CAS  Google Scholar 

  8. Allcock, H.R., Laredo, W.R., Kellam, E.C., and Morford, R.V., Macromolecules, 2001, vol. 34, no. 4, p. 787. doi https://doi.org/10.1021/ma001166n

    Article  CAS  Google Scholar 

  9. Morgalyuk, V.P., Strelkova, T.S., Pavlov, A.A., Buyanovskaya, A.G., Ostapchuk, P.N., Godovikov, I.A., and Brel’, V.K., Russ. J. Gen. Chem., 2017, vol. 87, no. 4, p. 739. doi https://doi.org/10.1134/S1070363217040120

    Article  CAS  Google Scholar 

  10. Liang, L. and Astruc, D., Coord. Chem. Rev., 2011, vol. 255, no. 23, p. 2933. Doi https://doi.org/10.1016/j.ccr.2011.06.028

    Article  CAS  Google Scholar 

  11. Kolarovič, A., Schnürch, M., and Mihovilovic, M.D., J. Org. Chem., 2011, vol. 76, no. 8, p. 2613. doi https://doi.org/10.1021/jo1024927

    Article  CAS  PubMed  Google Scholar 

  12. Dheer, D., Singh, V., and Shanka, R., Bioorg. Chem., 2017, vol. 71, p. 30. doi https://doi.org/10.1016/j.bioorg.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  13. Katorov, D.V., Rudakov, G.F., Katorova, I. N., Yakushkov, A.V., Simonov, D.P., and Zhilin, V.F., Russ. Chem. Bull., 2012, vol. 61, no. 11, p. 2114. doi https://doi.org/10.1007/s11172-012-0296-y

    Article  CAS  Google Scholar 

  14. Bulman, P.C., Stephenson, R.G., Harvey, J., and Slawin, A.M.Z., Synlett, 2016, vol. 27, no. 17, p. 2500. doi https://doi.org/10.1055/s-0035-1562603

    Article  CAS  Google Scholar 

  15. Gonzaga, D., Senger, M.R., de Carvalho da Silva, F., Ferreira, V.F., and Silva, F.P., Jr., Eur. J. Med. Chem., 2014, vol. 74, p. 461. doi https://doi.org/10.1016/j.ejmech.2013.12.039

    Article  CAS  PubMed  Google Scholar 

  16. Gonzaga, D.T.G., Ferreira, L.B.G., Costa, T.E.M.M., von Ranke, N.L., Pacheco, P.A.F., Simoes, A.P.S., Arruda, J.C., Dantas, L.P., de Freitas, H.R., de Melo Reis, R.A., Penido, C., Bello, M.L., Castro, H.C., Rodrigues, C.R., Ferreira, V.F., Faria, R.X., and de Carvalho da Silva, F., Eur. J. Med. Chem., 2017, vol. 139, p. 698. doi https://doi.org/10.1016/j.ejmech.2017.08.034

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-03-00275) and the Ministry of Science and Higher Education of the Russian Federation using the scientific equipment of the Center for Molecular Structure Research of the Institute of Organoelement Compounds of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Morgalyuk.

Additional information

Conflict of Interest

No conflict of interest was declared by the authors.

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 8, pp. 1233–1238.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgalyuk, V.P., Strelkova, T.S., Kononevich, Y.N. et al. Synthesis of 1,3,3,5,5-Penta[1-(2,2-dimethyl-1,3-dioxolan-4-yl)methoxy]-1-[(1H-1,2,3-triazol-4-yl)alkoxy]cyclotriphosphazenes. Russ J Gen Chem 89, 1620–1624 (2019). https://doi.org/10.1134/S1070363219080115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219080115

Keywords

Navigation