Skip to main content
Log in

Colloid and Nanosized Catalysts in Organic Synthesis: XXI. Reduction of Nitroarenes Catalyzed by Immobilized Nickel Nanoparticles

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

It has been found that nickel nanoparticles on NaX zeolite, γ-alumina, activated carbon, or magnesium oxide support catalyze the reduction of nitrobenzene and its homologs affording aniline and its derivatives in high yield. The effect of the substrate on the process in a continuous reactor at atmospheric hydrogen pressure has been investigated. The use of activated carbon or magnesium oxide as a carrier allows proceeding of the reaction at 80–100°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Popov, Y.V., Mokhov, V.M., Latyshova, S.E., Nebykov, D.N., Panov, A.O., and Davydova, T.M., Russ. J. Gen. Chem., 2018, vol. 88, no. 10, p. 2035. doi https://doi.org/10.1134/S1070363218100018

    Article  CAS  Google Scholar 

  2. Dao, S., Qian, W., Luo, G., Wei, F., and Wang, Y., Appl. Catal. (A), 2005, vol. 286, no. 1, p. 30. doi https://doi.org/10.1016/j.apcata.2005.02.026

    Article  CAS  Google Scholar 

  3. Chary, K.VR. and Srikanth, C.S., Catal. Lett., 2009, vol. 128, nos. 1–2, p. 164. doi https://doi.org/10.1007/s10562-008-9720-1

    Article  CAS  Google Scholar 

  4. Nieto-Márquez, A., Gil, S., Romero, A., Valverde, J.L., Gómez-Quero, S., and Keane, M.A., Appl. Catal. (A), 2009, vol. 363, nos. 1–2, p. 188. doi https://doi.org/10.1016/j.apcata.2009.05.016

    Article  CAS  Google Scholar 

  5. Wang, J., Yuan, Z., Nie, R., Hou, Z., and Zheng, X., Ind. Eng. Chem. Res., 2010, vol. 49, no. 10, p. 4664. doi https://doi.org/10.1021/ie1002069

    Article  CAS  Google Scholar 

  6. Sangeetha, P., Shanthi, K., RamaRao, K.S., Viswanathan, B., and Selvam, P., Appl. Catal. (A), 2009, vol. 353, no. 2, p. 160. doi https://doi.org/10.1016/j.apcata.2008.10.044

    Article  CAS  Google Scholar 

  7. Torres, C., Campos, C., Fierro, J.G., Oportus, M., and Reyes, P., Catal. Lett., 2013, vol. 143, no. 8, p. 763. doi https://doi.org/10.1007/s10562-013-1034-2

    Article  CAS  Google Scholar 

  8. Takasaki, M., Motoyama, Y., Higashi, K., Yoon, S.-H., Mochida, I., and Nagashima, H., Org. Lett., 2008, vol. 10, no. 8, p. 1601. doi https://doi.org/10.1021/ol800277a

    Article  CAS  PubMed  Google Scholar 

  9. Fine Chemicals through Heterogeneous Catalysis, Sheldon, R.A. and van Bekkum, H., Eds., Weinheim: Wiley-VCH, 2001, p. 389.

    Google Scholar 

  10. Cardenas-Lizana, F., Gomez-Quero, S., and Keane, M.A., ChemSusChem., 2008, vol. 1, p. 215. doi https://doi.org/10.1002/cssc.200700105

    Article  CAS  PubMed  Google Scholar 

  11. Kuhn, L.P., J. Am. Chem. Soc., 1951, vol. 73, no. 4, p. 1510. doi https://doi.org/10.1021/ja01148a029

    Article  CAS  Google Scholar 

  12. Allen, C.F.H. and Van Allan, J., Org. Synth. Coll., 1955, vol. 3, p. 63.

    Google Scholar 

  13. Xiong, J., Chen, J., Zhang, J., Catal. Commun., 2007, vol. 8, no. 3, p. 345. doi https://doi.org/10.1016/j.catcom.2006.06.028

    Article  CAS  Google Scholar 

  14. Winstrom, L.O., US Patent 2822397A, 1955.

  15. Varkolu, M., Velpula, V., Pochamoni, R., Muppala, A.R., Burri, D.R., and Kamaraju, S.R.R., Appl. Petrochem. Res., 2016, vol. 6, no. 1, p. 15. doi https://doi.org/10.1007/s13203-015-0115-0

    Article  CAS  Google Scholar 

  16. Chary, K.V.R. and Srikanth, C.S., Catal. Lett., 2009, vol. 128, nos. 1–2, p. 164. doi https://doi.org/10.1007/s10562-008-9720-1

    Article  CAS  Google Scholar 

  17. Sangeetha, P., Seetharamulu, P., Shanthi, K., Narayanan, S., and Rama Rao, K.S., J. Mol. Catal. (A), 2007, vol. 273, nos. 1–2, p. 244. doi https://doi.org/10.1016/j.molcata.2007.03.020

    Article  CAS  Google Scholar 

  18. Mohan, V., Pramod, C.V., Suresh, M., Reddy, K.H.P., Raju, B.D., and Rao, K.S.R., Catal. Commun., 2012, vol. 18, p. 89. doi https://doi.org/10.1016/j.catcom.2011.11.030

    Article  CAS  Google Scholar 

  19. Hari Prasad Reddy, K., Rahul, R., Sree Vardhan Reddy, S., David Raju, B., and Rama Rao, K.S., Catal. Commun., 2009, vol. 10, no. 6, p. 879. doi https://doi.org/10.1016/j.catcom.2008.12.014

    Article  CAS  Google Scholar 

  20. Mokhov, V.M., Popov, Yu.V., and Nebykov, D.N., Russ. J. Gen. Chem., 2014, vol. 84, no. 8, p. 1515. doi https://doi.org/10.1134/S107036321408012X

    Article  CAS  Google Scholar 

  21. Wang, A., Yin, H., Ren, M., Lu, H., Xue, J., and Jiang, T., New J. Chem., 2010, vol. 34, no. 4, p. 708. doi https://doi.org/10.1039/b9nj00657e

    Article  CAS  Google Scholar 

  22. Wang, J., Yuan, Z., Nie, R., Hou, Z., and Zheng, X., Ind. Eng. Chem. Res., 2010, vol. 49, no. 10, p. 4664. doi https://doi.org/10.1021/ie1002069

    Article  CAS  Google Scholar 

  23. Shokouhimehr, M., Catalysts, 2015, vol. 5, no. 2, p. 534. doi https://doi.org/10.3390/catal5020534

    Article  CAS  Google Scholar 

  24. Pelisson, C.-H., Denicourt-Nowicki, A., Meriadec, C., Greneche, J.-M., and Roucoux, A., ChemCatChem., 2015, vol. 7, no. 2, p. 309. doi https://doi.org/10.1002/cctc.201402761

    Article  CAS  Google Scholar 

  25. Popov, Y.V., Mokhov, V.M., Latyshova, S.E., Nebykov, D.N., Panov, A.O., and Pletneva, M.Y., Russ. J. Gen. Chem., 2017, vol. 87, N. 10, p. 2276. doi https://doi.org/10.1134/S107036321710005X

    Article  CAS  Google Scholar 

  26. Mokhov, V.M., Popov, Yu.V., and Nebykov, D.N., Russ. J. Gen. Chem., 2016, vol. 53, no. 3, p. 319. doi https://doi.org/10.1134/S1070428016030040

    Google Scholar 

  27. Popov, Yu.V., Mokhov, V.M., Nebykov, D.N., Latyshova, S.E., Panov, A.O., Dontsova, A.A., Shirkhanyan, P.M., and Shcherbakova, K.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 12, p. 2589. doi https://doi.org/10.1134/S1070363216120033

    Article  CAS  Google Scholar 

  28. Popov, Yu.V., Mokhov, V.M., Latyshova, S.E., Nebykov, D.N., Panov, A.O., and Davydova, T.M., Russ. J. Gen. Chem., 2017, vol. 87, no. 12, p. 2757. doi https://doi.org/10.1134/S1070363217120015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Popov.

Additional information

Conflict of Interest

No conflict of interest was declared by the authors.

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 8, pp. 1151–1156.

For communication XX, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, V.M., Popov, Y.V., Nebykov, D.N. et al. Colloid and Nanosized Catalysts in Organic Synthesis: XXI. Reduction of Nitroarenes Catalyzed by Immobilized Nickel Nanoparticles. Russ J Gen Chem 89, 1549–1553 (2019). https://doi.org/10.1134/S1070363219080012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219080012

Keywords

Navigation