Skip to main content
Log in

Influence of Aryl-Substituted Xylose Derivatives on Fermentation of Antifungal Antibiotic Imbricin

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The influence of aryl-substituted xylose derivatives on fermentation of nonmedical antifungal antibiotic imbricin was evaluated. It was shown that, though unsuitable as additional carbohydrate sources in the growth medium for microorganism-producer development, these compounds can be used as biosynthesis regulators stimulating the antibiotic production. Biological tests showed that the aryl-substituted xylose derivatives possess antibacterial activity and, when added to the initial fermentation medium, protect the imbricin fermentation process against possible contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmid, R.D., Taschenatlas der Biotechnologie und Gentechnik, Weinheim: Wiley, 2006.

    Google Scholar 

  2. Chkhenkheli, V.A., Biotekhnologiya (Biotechnology), St. Petersburg: Prospekt Nauki, 2014, pp. 165–190.

    Google Scholar 

  3. Bykovskii, S.N. and Gusarova, D.A., “Krasnaya biotekhnologiya:” ot nauki k promyshlennosti (“Red Biotechnology:” from Science to Industry), Moscow: Pero, 2017.

    Google Scholar 

  4. Kovalenko, L.V., Biokhimicheskie osnovy khimii biologicheski aktivnykh veshchestv (Biochemical Principles of Chemistry of Bioactive Substances), Moscow: BINOM. Laboratoriya Znanii, 2010.

    Google Scholar 

  5. Bezborodov, A.M. and Kvesitadze, G.I., Mikrobiologicheskii sintez (Microbiological Synthesis), St. Petersburg: Prospekt Nauki, 2011, pp. 60–102.

    Google Scholar 

  6. Lukanin, A.V., Inzhenernaya biotekhnologiya: osnovy tekhnologii mikrobiologicheskikh proizvodstv (Engineering Biotechnology: Fundamentals of Microbiological Production Technology), Moscow: INFRA-M, 2017.

    Google Scholar 

  7. Lancini, G. and Parenti, F., Antibiotics: an Integrated View, New York: Springer, 1982.

    Book  Google Scholar 

  8. Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Basic Theory of Antibiotics), 5 ed., Moscow: Mosk. Gos. Univ., 1994, pp. 391–405.

    Google Scholar 

  9. Galynkin, V.A., Zaikina, N.A., Mindukshev, I.V., and Yurlova, N.A., Promyshlennaya mikologiya (Industrial Mycology), St. Petersburg: Sankt-Peterb. Gos. Khim.-Farm. Akad., 2003, p. 174.

    Google Scholar 

  10. Hook, D.J., in Basic Biotechnology, 3rd ed., Cambridge (UK): Cambridge Univ. Press, 2006, p. 433.

    Book  Google Scholar 

  11. Corcoran, J.W., Biosynthesis, Berlin: Springer Science and Business Media, 2012.

    Google Scholar 

  12. Belakhov, V.V., Yakovleva, E.P., Kolodyaznaya, V.A., and Boikova, I.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 13, p. 3220. doi https://doi.org/10.1134/S1070363217130175

    Article  CAS  Google Scholar 

  13. Belakhov, V., Dor, E., Hershenhorn, J., Botoshansky, M., Bravman, T., Kolog, M., Shoham, Y., and Baasov, T., Isr. J. Chem., 2000, vol. 40, nos. 3–4, p. 177. https://eurekamag.com/pdf/003/003444479.pdf

  14. Belakhov, V.V. and Garabadzhiu, A.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 13, p. 3002. doi https://doi.org/10.1134/S1070363216130120

    Article  CAS  Google Scholar 

  15. Belakhov, V.V., Garabadzhiu, A.V., Boikova, I.V., and Antonova, I.A., Russ. J. Gen. Chem., 2017, vol. 87, no. 3, p. 456. doi https://doi.org/10.1134/S107036321703148

    Article  CAS  Google Scholar 

  16. Belakhov, V.V., Garabadzhiu, A.V., Boikova, I.V., and Novikova, I.I., Russ. J. Gen. Chem., 2017, vol. 87, no. 13, p. 3151. doi https://doi.org/10.1134/S1070363217130072

    Article  CAS  Google Scholar 

  17. Mechaly, A., Belakhov, V., Shoham, Y., and Baasov, T., Carbohydr. Res., 1997, vol. 304, no. 2, p. 111.

    Article  CAS  Google Scholar 

  18. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Oxford: Butterworth-Heinemann, 2012.

    Google Scholar 

  19. Topkova, O.V., Candidate Sci. (Biol.) Dissertation, St. Petersburg: Sankt-Peterb. Gos. Khim.-Farm. Akad., 2007.

    Google Scholar 

  20. Gabidova, A.E., Analiz mikrobiologicheskogo riska v proizvodstve pishchevykh produktov i lekarstvennykh preparatov (Analysis of Microbiological Risk in Production of Food and Drugs), St. Petersburg: Prospekt Nauki, 2016.

    Google Scholar 

  21. Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Basic Theory of Antibiotics), 6 ed., Moscow: Mosk. Gos. Univ., 2004, p. 472.

    Google Scholar 

  22. Volova, T.G., Vvedenie v biotekhnologiyu (Introduction to Biotechnology), Krasnoyarsk: Sibirsk. Feder. Univ., 2008, p. 63.

    Google Scholar 

  23. Galynkin, V.A., Zaikina, N.A., Kocherovets, V.I., Potekhina, T.S., and Bunyatyan, N.D., Osnovy farmatsevticheskoi mikrobiologii (Fundamentals of Pharmaceutical Microbiology), St. Petersburg: Prospekt Nauki, 2008, p. 84.

    Google Scholar 

  24. Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Martin, J.-F., Garcia-Estrada, C. and Zeilinger, S., Eds., New York: Springer, 2014.

    Google Scholar 

  25. Kong, D., Lee, M.-J., Lin, S., and Kim, E.-S., J. Ind. Microbiol. Biotechnol., 2013, vol. 40, no. 6, p. 529. doi https://doi.org/10.1007/s10295-013-1258-6

    Article  CAS  PubMed  Google Scholar 

  26. Aparicio, J.F., Barreales, E.G., Payero, T.D., Vicente, C.M., Pedro, A., and Santos-Aberturas, J., Appl. Microbiol. Biotechnol., 2016, vol. 100, no. 1, p. 61. doi https://doi.org/10.1007/s00253-015-7077-0

    Article  CAS  PubMed  Google Scholar 

  27. Kudo, F. and Eguchi, T., Chem. Record, 2016, vol. 16, no. 1, p. 4. doi https://doi.org/10.1002/tcr.201500210

    Article  CAS  Google Scholar 

  28. Bakulin, M.K., Grudtsyna, A.S., Pletneva, A.Yu., Kucherenko, A.S., Bakulina, L.V., and Shvedov, I.I., Biotekhnologiya, 2006, no. 5, pp. 39–44.

    Google Scholar 

  29. Topkova, O.V., Yakovleva, E.P., and Kolodyaznaya, V.A., Antibiot. Khimioter., 2010, vol. 55, nos. 3–4, p. 3.

  30. Zotchev, S.B., in Natural Products in Chemical Biology, Civjan, N., Ed., New York: Wiley, 2012, p. 269.

    Google Scholar 

  31. Liu, G., Chater, K.F., Chandra, G.N., Niu, G., and Tan, H., Microbiol. Mol. Biol. Rev., 2013, vol. 77, no. 1, p. 112. doi https://doi.org/10.1128/MMBR.00054-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hamashima, K. and Kanai, A., Biomol. Concepts, 2013, vol. 4, no. 3, p. 309. doi https://doi.org/10.1515/bmc-2013-0002

    Article  CAS  PubMed  Google Scholar 

  33. Weber, T., Int. J. Med. Microbiol., 2014, vol. 304, nos. 3–4, p. 230. doi https://doi.org/10.1016/j.ijmm.2014.02.001

  34. Yim, G., Thaker, M.N., Koteva, K., and Wright, G., J. Antibiot., 2014, vol. 67, no. 1, p. 31.

    Article  CAS  PubMed  Google Scholar 

  35. Baltz, R.H., ACS Synth. Biol., 2014, vol. 3, no. 10, p. 748. doi https://doi.org/10.1021/sb3000673

    Article  CAS  PubMed  Google Scholar 

  36. Chen, W., Qi, J., Wu, P., Wan, D., Liu, J., Feng, X., and Deng, Z., J. Ind. Microbiol. Biotechnol., 2016, vol. 43, nos. 2–3, p. 401. doi https://doi.org/10.1007/s10295-015-1636-3

  37. Park, J.W., Nam, S.-J., and Yoon, Y.J., Biochem. Pharm., 2017, vol. 134, p. 56. doi https://doi.org/10.1016/j.bcp.2016.10.009

    Article  CAS  PubMed  Google Scholar 

  38. Freshney, R.I., Culture of Animal Cells: a Manual of Basic Technique, 3rd ed., New York: Wiley, 1994.

    Google Scholar 

  39. Galynkin, V.A., Zaikina, N.A., Kocherovets, V.I., and Potekhina, T.S., Farmatsevticheskaya mikrobiologiya (Pharmaceutical Microbiology), Moscow: Arnebiya, 2003, p. 287.

    Google Scholar 

  40. Galynkin, V.A., Zaikina, N.A., Kocherovets, V.I., and Kurbatova, I.Z., Pitatel’nye sredy dlya mikrobiologicheskogo kontrolya kachestva lekarstvennykh sredstv i pishchevykh produktov (Nutrient Media for Microbiological Quality Control of Medicines and Food Products), St. Petersburg: Prospekt Nauki, 2006, p. 31.

    Google Scholar 

  41. Antibiotics: Current Innovations and Future Trends, Sanchez, S. and Demain, A. L., Eds., Norfolk (UK): Caister Academic, 2015, p. 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Belakhov.

Additional information

Original Russian Text © E.P. Yakovleva, V.A. Kolodyaznaya, I.V. Boikova, V.V. Belakhov, 2018, published in Ekologicheskaya Khimiya, 2018, Vol. 27, No. 1, pp. 1–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovleva, E.P., Kolodyaznaya, V.A., Boikova, I.V. et al. Influence of Aryl-Substituted Xylose Derivatives on Fermentation of Antifungal Antibiotic Imbricin. Russ J Gen Chem 88, 2829–2836 (2018). https://doi.org/10.1134/S1070363218130017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218130017

Keywords

Navigation