Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 4, pp 721–730 | Cite as

Thermodynamic and Kinetic Parameters of Cerium(IV) Complexes with Some Dicarboxylic Acids

  • O. O. Voskresenskaya
  • N. A. Skorik
  • Yu. V. Yuzhakova
Article
  • 18 Downloads

Abstract

The thermodynamic and kinetic parameters of the cerium(IV) complexes formed in the initial stage of oxidation of dicarboxylic acids (H2L), like pentanedioic, butanedioic, propanedioic, and ethanedioic acids, by cerium(IV) sulfate were studied by the spectrophotometric and pH-potentiometric methods with the aid of integral kinetic methods at an ionic strength I = 2 mol/L within the pH range of–0.3–1.6 in a sulfuric acid medium and at temperature of 293.15 K. The composition of these complexes, the form of organic ligand existence therein, the thermodynamic parameters of their formation, and the kinetic parameters of their intramolecular redox decomposition were determined. Linear correlations between the found thermodynamic and kinetic parameters of the examined complexes [CeOHL]+ were obtained. The rate equation of the redox process occurring in the systems Ce4+–H2L was established and the corresponding reaction model was considered.

Keywords

cerium cerium(IV) complexes dicarboxylic acids coordination compounds principle of linear relationships between free energies (LFE relationships) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to A.J. Colussi (California Institute of Technology) for the interest in the work.

References

  1. 1.
    Cerium: Molecular Structure, Technological Applications and Health Effects, Izyumov, A. and Plaksin, G., Eds., New York: Nova Science Publishers, Inc, 2013.Google Scholar
  2. 2.
    Shcherbakov, A.B., Zholobak, N.M., Usatenko, A.V., Tretyakov, Yu.D., and Spivak, N.Ya., Biotechnol. Acta, 2011, vol. 4, no.p. 9.Google Scholar
  3. 3.
    Manteghi F. and Panahi H., Proc. 17th Int. Electron. Conf. Synth. Org. Chem. Sciforum Electronic Conference Series. 2013, vol. 17, p. a025. doi 10.3390/ecsoc-17-a025Google Scholar
  4. 4.
    US Patent no. 6214190 B1, 2001.Google Scholar
  5. 5.
    US Patent no. 7504357 B2, 2009.Google Scholar
  6. 6.
    WO Patent no. 2014121813 A1, 2014.Google Scholar
  7. 7.
    RF Patent no. 0002601763, 2016.Google Scholar
  8. 8.
    RF Patent no. 0002576763, 2016.Google Scholar
  9. 9.
    Saraç A.S., Prog. Polym. Sci., 1999, vol. 24. p. 1149. doi 10.1016/S0079-6700(99)00026-XCrossRefGoogle Scholar
  10. 10.
    Ustamehmetoğlu, B., Diler, Z.İ., and Saraç, A.S., Intern. J. Polym. Anal. Charact., 2002, vol. 7, p. 263. doi 10.1080/10236660290026494.CrossRefGoogle Scholar
  11. 11.
    Özeroglu, C. and Sezgin, S., Express Polym. Lett., 2007, vol. 1, no. 3, p. 132. doi 10.3144/expresspolymlett.2007.22CrossRefGoogle Scholar
  12. 12.
    Narayanan, M.P., Kannan, V., Vinayan, K.P., and Vasudevan, D.M., Indian J. Clin. Biochem., 2011, vol. 26, no. 4, p. 347. doi 10.1007/s12291-011-0111-9CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Koch, G.H. and Strong, F.M., Anal. Biochem., 1969, vol. 27, p. 162.CrossRefPubMedGoogle Scholar
  14. 14.
    Encyclopedia of Toxicology, Wexler, P., Ed., Amsterdam: Elsevier Inc., Academic Press, 2014, vol. 3, p. 76. doi 10.1016/b978-0-12-386454-3.01217-3Google Scholar
  15. 15.
    Ullmann's Encyclopedia of Industrial Chemistry, Elvers, B., Ed., Weinheim: Wiley-VCH, 2006, p. 2. doi 10.1002/14356007.a08_523Google Scholar
  16. 16.
    Krasikov, S.I., Mikhaylova, I.V., Sharapova, N.V., Kuz’michyova, N.F., and Karmanov, D.S., Metod permanganatometrii i tserimetrii v analize lekarstvennykh sredstv (Method of Permanganatometry and Ceriometry), Orenburg: OrGMU, 2013.Google Scholar
  17. 17.
    Kolthoff, I.M., Belcher, R., Stanger, V.A., and Matsuyama G., Volumetric Analysis, New York: Interscience, 1957, vol. 3, p. 190.Google Scholar
  18. 18.
    Sharma, N.N. and Mehrotra, R.C., Anal. Chim. Acta, 1954, vol. 11, p. 507.CrossRefGoogle Scholar
  19. 19.
    Organic Reaction Mechanisms, Knipe, A.S., and Watts, W.E., Eds., Chichester: Wiley, 1981. doi 10.1002/9780470066621Google Scholar
  20. 20.
    Rao, B.M. and Sastry T.P., Z. Phys. Chem. (Leipzig), 1983, vol. 264, p. 906.Google Scholar
  21. 21.
    Belousov, B.P., in Oscillations and Traveling Waves in Chemical Systems, Field, R.G. and Burger, M., Eds., New York: Interscience, 1985.Google Scholar
  22. 22.
    Zhabotinsky, A.M., in Oscillations and Traveling Waves in Chemical Systems, Field, R.G. and Burger, M., Eds., New York: Interscience, 1985.Google Scholar
  23. 23.
    Kasperek, G.T. and Bruice T.C., Inorg. Chem., 1971, vol. 10, p. 382. doi 10.1021/ic50096a034CrossRefGoogle Scholar
  24. 24.
    Voskresenskaya, O.O. and Skorik, N.A., Russ. J. Phys. Chem. (A), 2015, vol. 89, p. 1821. doi 10.7868/S0044453715100337CrossRefGoogle Scholar
  25. 25.
    Čevčik, P., Mišicák, D., and Adamčiková, L., Chem. Pap., 2006, vol. 60, no. 1, p. 1. doi 10.2478/s11696-006-0001-4CrossRefGoogle Scholar
  26. 26.
    Pelle, K., Wittmann, M., Lovric, K., Noszticzius, Z., Turco Liveri, M.L., and Lombardo, R., J. Phys. Chem. (A), 2004, vol. 108, p. 5377. doi 10.1021/jp048817sCrossRefGoogle Scholar
  27. 27.
    Györgyi, L., Turnáyi, T., and Field, R.J., J. Phys. Chem., 1990, vol. 94, p. 7162. doi 10.1021/j100381a039CrossRefGoogle Scholar
  28. 28.
    Field, R.J., Körös, E., and Noyes, R.M., J. Am. Chem. Soc., 1972, vol. 94, p. 8649. doi 10.1021/ja00780a001CrossRefGoogle Scholar
  29. 29.
    Yu, Y.-O. and Jwo, J.-J., J. Chin. Chem. Soc., 2000, vol. 47, p. 433. doi 10.1002/jccs.200000058CrossRefGoogle Scholar
  30. 30.
    Kvernberg, P.O., Hansen, E.W., Pedersen, B., Rasmussen, A., and Ruoff, P., J. Phys. Chem. (A), 1997, vol. 101, p. 2327. doi 10.1021/jp963316vCrossRefGoogle Scholar
  31. 31.
    Lazar, M., Free Radicals in Chemistry and Biology, Boca Raton: CRC Press, 1989, p. 250.Google Scholar
  32. 32.
    Tsai, R.-F. and Jwo, J.-J., Int. J. Chem. Kinet., 2001, vol. 33, p. 101. doi 10.1002/1097-4601(200102) 33:2<101::AID-KIN1001>3.0.CO;2-9CrossRefGoogle Scholar
  33. 33.
    Treindl, L. and Dorovsky, V., Collect. Czech. Chem. Commun., 1982, vol. 47, p. 2831. doi 10.1135/cccc19822831CrossRefGoogle Scholar
  34. 34.
    El-Tantawi, Y.A. and Rechnitz, G.A., Analyt. Chem., 1964, vol. 36, p. 1774.CrossRefGoogle Scholar
  35. 35.
    Sengupta, K.K. and Aditya, S., Z. Phys. Chem. (NF), 1963, vol. 38, p. 25.CrossRefGoogle Scholar
  36. 36.
    Amjad, Z. and McAuley, A., J. Chem. Soc. Dalton Trans., 1977, no. 3, p. 304. doi 10.1039/DT9770000304CrossRefGoogle Scholar
  37. 37.
    Brusa, M.A., Perissinotti, L.J., and Colussi, A.J., Inorg. Chem., 1988, vol. 27, p. 4474. doi 10.1021/ic00297a027CrossRefGoogle Scholar
  38. 38.
    Voskresenskaya, O.O. and Skorik, N.A., Russ. J. Phys. Chem. (A), 2017, vol. 91, p. 627. doi 10.1134/S0036024417040318CrossRefGoogle Scholar
  39. 39.
    Skorik, N.A. and Kumok, V.N., Khimiya koordinatsionnykh soedinenii (Chemistry of Coordination Compounds), Moscow: Vysshaya Shkola, 1975.Google Scholar
  40. 40.
    Trubacheva, L.V. and Pechurova, N.I., Russ. J. Inorg. Chem., 1981, vol. 26, p. 3254.Google Scholar
  41. 41.
    Sillen, L.G. and Martell, A., Stability Constants of Metal-Ion Complexes, London: Chemical Society, Burlington House, 1964.Google Scholar
  42. 42.
    Ardon, M., J. Chem. Soc., 1957, no. 4, p. 181. doi 10.1039/JR9570001811Google Scholar
  43. 43.
    Tobe, M.L., Inorganic Reaction Mechanisms, London: Thomas Nelson and Sons Ltd., 1972.Google Scholar
  44. 44.
    Candlin, J.P., Taylor, K.A., and Thompson, D.T., Reactions of Transition Metal-Complexes, Amsterdam: Elsevier, 1968.Google Scholar
  45. 45.
    Pal’m, V.A., Osnovy kolichestvennoi teorii organicheskikh reaktsii (Basics of Quantitative Theory of Organic Reactions), Leningrad: Khimiya, 1977.Google Scholar
  46. 46.
    Andreev, V.P., Nizhnik, Ya.P., and Lebedeva, N.Sh., Russ. J. Org. Chem., 2008, vol. 44, p. 906. doi 10.1134/S1070428008060213CrossRefGoogle Scholar
  47. 47.
    Skorik, N.A. and Chernov, E.B., Raschety s ispol’zovaniem personal’nykh komp’yuterov v khimii kompleksnykh soedinenii (Calculations with Personal Computers in the Chemistry of Complex Compounds), Tomsk: Tomsk. Gos. Univ., 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. O. Voskresenskaya
    • 1
  • N. A. Skorik
    • 2
  • Yu. V. Yuzhakova
    • 2
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations