Skip to main content
Log in

Thermodynamic and Kinetic Parameters of Cerium(IV) Complexes with Some Dicarboxylic Acids

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamic and kinetic parameters of the cerium(IV) complexes formed in the initial stage of oxidation of dicarboxylic acids (H2L), like pentanedioic, butanedioic, propanedioic, and ethanedioic acids, by cerium(IV) sulfate were studied by the spectrophotometric and pH-potentiometric methods with the aid of integral kinetic methods at an ionic strength I = 2 mol/L within the pH range of–0.3–1.6 in a sulfuric acid medium and at temperature of 293.15 K. The composition of these complexes, the form of organic ligand existence therein, the thermodynamic parameters of their formation, and the kinetic parameters of their intramolecular redox decomposition were determined. Linear correlations between the found thermodynamic and kinetic parameters of the examined complexes [CeOHL]+ were obtained. The rate equation of the redox process occurring in the systems Ce4+–H2L was established and the corresponding reaction model was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cerium: Molecular Structure, Technological Applications and Health Effects, Izyumov, A. and Plaksin, G., Eds., New York: Nova Science Publishers, Inc, 2013.

    Google Scholar 

  2. Shcherbakov, A.B., Zholobak, N.M., Usatenko, A.V., Tretyakov, Yu.D., and Spivak, N.Ya., Biotechnol. Acta, 2011, vol. 4, no.p. 9.

    Google Scholar 

  3. Manteghi F. and Panahi H., Proc. 17th Int. Electron. Conf. Synth. Org. Chem. Sciforum Electronic Conference Series. 2013, vol. 17, p. a025. doi 10.3390/ecsoc-17-a025

    Google Scholar 

  4. US Patent no. 6214190 B1, 2001.

  5. US Patent no. 7504357 B2, 2009.

  6. WO Patent no. 2014121813 A1, 2014.

  7. RF Patent no. 0002601763, 2016.

  8. RF Patent no. 0002576763, 2016.

  9. Saraç A.S., Prog. Polym. Sci., 1999, vol. 24. p. 1149. doi 10.1016/S0079-6700(99)00026-X

    Article  Google Scholar 

  10. Ustamehmetoğlu, B., Diler, Z.İ., and Saraç, A.S., Intern. J. Polym. Anal. Charact., 2002, vol. 7, p. 263. doi 10.1080/10236660290026494.

    Article  Google Scholar 

  11. Özeroglu, C. and Sezgin, S., Express Polym. Lett., 2007, vol. 1, no. 3, p. 132. doi 10.3144/expresspolymlett.2007.22

    Article  CAS  Google Scholar 

  12. Narayanan, M.P., Kannan, V., Vinayan, K.P., and Vasudevan, D.M., Indian J. Clin. Biochem., 2011, vol. 26, no. 4, p. 347. doi 10.1007/s12291-011-0111-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koch, G.H. and Strong, F.M., Anal. Biochem., 1969, vol. 27, p. 162.

    Article  CAS  PubMed  Google Scholar 

  14. Encyclopedia of Toxicology, Wexler, P., Ed., Amsterdam: Elsevier Inc., Academic Press, 2014, vol. 3, p. 76. doi 10.1016/b978-0-12-386454-3.01217-3

  15. Ullmann's Encyclopedia of Industrial Chemistry, Elvers, B., Ed., Weinheim: Wiley-VCH, 2006, p. 2. doi 10.1002/14356007.a08_523

    Google Scholar 

  16. Krasikov, S.I., Mikhaylova, I.V., Sharapova, N.V., Kuz’michyova, N.F., and Karmanov, D.S., Metod permanganatometrii i tserimetrii v analize lekarstvennykh sredstv (Method of Permanganatometry and Ceriometry), Orenburg: OrGMU, 2013.

    Google Scholar 

  17. Kolthoff, I.M., Belcher, R., Stanger, V.A., and Matsuyama G., Volumetric Analysis, New York: Interscience, 1957, vol. 3, p. 190.

    Google Scholar 

  18. Sharma, N.N. and Mehrotra, R.C., Anal. Chim. Acta, 1954, vol. 11, p. 507.

    Article  CAS  Google Scholar 

  19. Organic Reaction Mechanisms, Knipe, A.S., and Watts, W.E., Eds., Chichester: Wiley, 1981. doi 10.1002/9780470066621

    Google Scholar 

  20. Rao, B.M. and Sastry T.P., Z. Phys. Chem. (Leipzig), 1983, vol. 264, p. 906.

    CAS  Google Scholar 

  21. Belousov, B.P., in Oscillations and Traveling Waves in Chemical Systems, Field, R.G. and Burger, M., Eds., New York: Interscience, 1985.

  22. Zhabotinsky, A.M., in Oscillations and Traveling Waves in Chemical Systems, Field, R.G. and Burger, M., Eds., New York: Interscience, 1985.

  23. Kasperek, G.T. and Bruice T.C., Inorg. Chem., 1971, vol. 10, p. 382. doi 10.1021/ic50096a034

    Article  Google Scholar 

  24. Voskresenskaya, O.O. and Skorik, N.A., Russ. J. Phys. Chem. (A), 2015, vol. 89, p. 1821. doi 10.7868/S0044453715100337

    Article  CAS  Google Scholar 

  25. Čevčik, P., Mišicák, D., and Adamčiková, L., Chem. Pap., 2006, vol. 60, no. 1, p. 1. doi 10.2478/s11696-006-0001-4

    Article  Google Scholar 

  26. Pelle, K., Wittmann, M., Lovric, K., Noszticzius, Z., Turco Liveri, M.L., and Lombardo, R., J. Phys. Chem. (A), 2004, vol. 108, p. 5377. doi 10.1021/jp048817s

    Article  CAS  Google Scholar 

  27. Györgyi, L., Turnáyi, T., and Field, R.J., J. Phys. Chem., 1990, vol. 94, p. 7162. doi 10.1021/j100381a039

    Article  Google Scholar 

  28. Field, R.J., Körös, E., and Noyes, R.M., J. Am. Chem. Soc., 1972, vol. 94, p. 8649. doi 10.1021/ja00780a001

    Article  CAS  Google Scholar 

  29. Yu, Y.-O. and Jwo, J.-J., J. Chin. Chem. Soc., 2000, vol. 47, p. 433. doi 10.1002/jccs.200000058

    Article  CAS  Google Scholar 

  30. Kvernberg, P.O., Hansen, E.W., Pedersen, B., Rasmussen, A., and Ruoff, P., J. Phys. Chem. (A), 1997, vol. 101, p. 2327. doi 10.1021/jp963316v

    Article  CAS  Google Scholar 

  31. Lazar, M., Free Radicals in Chemistry and Biology, Boca Raton: CRC Press, 1989, p. 250.

    Google Scholar 

  32. Tsai, R.-F. and Jwo, J.-J., Int. J. Chem. Kinet., 2001, vol. 33, p. 101. doi 10.1002/1097-4601(200102) 33:2<101::AID-KIN1001>3.0.CO;2-9

    Article  CAS  Google Scholar 

  33. Treindl, L. and Dorovsky, V., Collect. Czech. Chem. Commun., 1982, vol. 47, p. 2831. doi 10.1135/cccc19822831

    Article  CAS  Google Scholar 

  34. El-Tantawi, Y.A. and Rechnitz, G.A., Analyt. Chem., 1964, vol. 36, p. 1774.

    Article  Google Scholar 

  35. Sengupta, K.K. and Aditya, S., Z. Phys. Chem. (NF), 1963, vol. 38, p. 25.

    Article  Google Scholar 

  36. Amjad, Z. and McAuley, A., J. Chem. Soc. Dalton Trans., 1977, no. 3, p. 304. doi 10.1039/DT9770000304

    Article  Google Scholar 

  37. Brusa, M.A., Perissinotti, L.J., and Colussi, A.J., Inorg. Chem., 1988, vol. 27, p. 4474. doi 10.1021/ic00297a027

    Article  CAS  Google Scholar 

  38. Voskresenskaya, O.O. and Skorik, N.A., Russ. J. Phys. Chem. (A), 2017, vol. 91, p. 627. doi 10.1134/S0036024417040318

    Article  CAS  Google Scholar 

  39. Skorik, N.A. and Kumok, V.N., Khimiya koordinatsionnykh soedinenii (Chemistry of Coordination Compounds), Moscow: Vysshaya Shkola, 1975.

    Google Scholar 

  40. Trubacheva, L.V. and Pechurova, N.I., Russ. J. Inorg. Chem., 1981, vol. 26, p. 3254.

    CAS  Google Scholar 

  41. Sillen, L.G. and Martell, A., Stability Constants of Metal-Ion Complexes, London: Chemical Society, Burlington House, 1964.

    Google Scholar 

  42. Ardon, M., J. Chem. Soc., 1957, no. 4, p. 181. doi 10.1039/JR9570001811

    Google Scholar 

  43. Tobe, M.L., Inorganic Reaction Mechanisms, London: Thomas Nelson and Sons Ltd., 1972.

    Google Scholar 

  44. Candlin, J.P., Taylor, K.A., and Thompson, D.T., Reactions of Transition Metal-Complexes, Amsterdam: Elsevier, 1968.

    Google Scholar 

  45. Pal’m, V.A., Osnovy kolichestvennoi teorii organicheskikh reaktsii (Basics of Quantitative Theory of Organic Reactions), Leningrad: Khimiya, 1977.

    Google Scholar 

  46. Andreev, V.P., Nizhnik, Ya.P., and Lebedeva, N.Sh., Russ. J. Org. Chem., 2008, vol. 44, p. 906. doi 10.1134/S1070428008060213

    Article  CAS  Google Scholar 

  47. Skorik, N.A. and Chernov, E.B., Raschety s ispol’zovaniem personal’nykh komp’yuterov v khimii kompleksnykh soedinenii (Calculations with Personal Computers in the Chemistry of Complex Compounds), Tomsk: Tomsk. Gos. Univ., 2009.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to A.J. Colussi (California Institute of Technology) for the interest in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Voskresenskaya.

Additional information

Original Russian Text © O.O. Voskresenskaya, N.A. Skorik, Yu.V. Yuzhakova, 2018, published in Zhurnal Obshchei Khimii, 2018, Vol. 88, No. 4, pp. 640–649.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskresenskaya, O.O., Skorik, N.A. & Yuzhakova, Y.V. Thermodynamic and Kinetic Parameters of Cerium(IV) Complexes with Some Dicarboxylic Acids. Russ J Gen Chem 88, 721–730 (2018). https://doi.org/10.1134/S1070363218040163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218040163

Keywords

Navigation