Russian Journal of General Chemistry

, Volume 88, Issue 4, pp 646–649 | Cite as

Effect of Glycine and Monoethanolamine on the Stability and Reductive Activity of Thiourea Dioxide in Aqueous Solutions

  • S. V. Makarov
  • А. А. Kuznetsova
  • D. S. Salnikov
  • А. G. Kiseleva
Article
  • 4 Downloads

Abstract

The effect of glycine and monoethanolamine on the stability and reductive activity of thiourea dioxide in the reaction with acid orange II dye was studied. It was found that, in contrast to glycine, introduction of additives of monoethanolamine into aqueous solution of thiourea dioxide substantially increases its reductive activity in alkaline solutions, although the stability of the thiourea dioxide monoethanol amine derivative in alkaline solutions is much lower than that of thiourea dioxide and the product of its reaction with glycine.

Keywords

thiourea dioxide glycine monoethanolamine aminoacids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 16-03-00162).

References

  1. 1.
    Makarov, S.V., Horváth, A.K., Silaghi-Dumitrescu, R., and Gao, Q., Sodium Dithionite, Rongalite and Thiourea Oxides. Chemistry and Application, Singapore: World Scientific, 2016.CrossRefGoogle Scholar
  2. 2.
    Makarov, S.V., Horváth, A.K., Silaghi-Dumitrescu, R., and Gao, Q., Chem. Eur. J., 2014, vol. 20, p. 14164. doi 10.1002/chem.201403453CrossRefGoogle Scholar
  3. 3.
    Makarov, S.V., Russ. Chem. Rev., 2001, vol. 70, no. 10, p. 885. doi 10.1070/RC2001v070n10ABEH000659CrossRefGoogle Scholar
  4. 4.
    Patai’s Chemistry of Functional Groups, Greer, A. and Liebman, J.F., Eds., Chichester: Wiley and Sons, 2014, vol. 3, pt. 1, p. 265. doi 10.1002/9780470682531.pat0829Google Scholar
  5. 5.
    von Itzstein, M., Wu, W.-Y., and Jin, B., Carbohydr. Res., 1994, vol. 259, p. 301. doi 10.1016/0008-6215(94) 84065-2CrossRefGoogle Scholar
  6. 6.
    Jursic, B.S., Neumann, D., and McPherson, A., Synthesis, 2000, no. 12, p. 1656. doi 10.1055/s-2000-8201CrossRefGoogle Scholar
  7. 7.
    Nitoh, H., Ohura, O., and Suzuki, M., USA Patent no. 4943661A, 1990.Google Scholar
  8. 8.
    Nitoh, H., Ohura, O., and Suzuki, M., EU Patent no. 0488749A1, 1992.Google Scholar
  9. 9.
    Zhou, L., Shan, J., Liu, X., and Shao, J., Color. Technol., 2015, vol. 131, p. 149. doi 10.1111/cote.12129CrossRefGoogle Scholar
  10. 10.
    Colanduoni, J. and Villafranca, J.J., J. Biol. Chem., 1985, vol. 260, p. 15042. doi 10.1016/0006-291X(85) 90621-7Google Scholar
  11. 11.
    Miller, A.E., Bischoff, J.J., and Pae, K., Chem. Res. Toxicol., 1988, vol. 1, p. 169. doi 10.1021/tx00003a007CrossRefGoogle Scholar
  12. 12.
    Vogel’s Textbook of Macro and Semimicro Qualitative Inorganic Analysis, Svehla, G., London: Longman, 1979, p. 294.Google Scholar
  13. 13.
    Emanuel’, N.M., and Knorre, D.G., Course of Chemical Kinetics, Мoscow: Vysshaya Shkola, 1984, p. 194.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Makarov
    • 1
  • А. А. Kuznetsova
    • 1
  • D. S. Salnikov
    • 1
  • А. G. Kiseleva
    • 1
  1. 1.Ivanovo State Chemical Technological UniversityIvanovoRussia

Personalised recommendations