Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 4, pp 622–625 | Cite as

Quantum Chemical Study of Niobium and Tantalum M4O10 Oxide Clusters and M4O 10 Anions

  • S. G. Semenov
  • M. E. Bedrina
  • V. A. Klemeshev
  • A. V. Titov
Article

Abstract

Structural parameters and vibrational frequencies of the clusters (Td)–Nb4O10, (C3v)-TaNb3O10, (D2d)-Nb4O 10 , and (Cs)-TaNb3O 10 were calculated. According to the (U)DFT/SDD calculations with BLYP, B3LYP, and PBE0 functionals magnetization of the anion (D2d)-Nb4O 10 is distributed equally among four niobium atoms. In the anion (Cs)-TaNb3O 10 unpaired electron presumably occupies niobium atoms. The distinction in contributions from Nb atoms in the magnetization of the tantalum-containing cluster grows with the exchange component of the DFT functional in the series of functionals BLYP < B3LYP < PBE0 < UHF.

Keywords

oxide cluster niobium tantalum spin delocalization DFT methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The work was supported by the Russian Scientific Foundation (grant no. 14-31-00022).

References

  1. 1.
    Asmis, K.R., Santambrogio, G., Brümmer, N., and Sauer, J., Angew. Chem. Int. Ed., 2005, vol. 44, no. 20, p. 3122. doi 10.1002/anie.200462894CrossRefGoogle Scholar
  2. 2.
    Asmis, K.R. and Sauer, J., Mass Spectrom. Rev., 2007, vol. 26, no. 4, p. 542. doi 10.1002/masCrossRefPubMedGoogle Scholar
  3. 3.
    Santambrogio, G., Brümmer, N., Wöste, L., Döbler, J., Sierka, M., Sauer, J., Meijer, G., and Asmis, K.R., Phys. Chem. Chem. Phys., 2008, vol. 10, no. 27, p. 3992. doi 10.1039/b803492cCrossRefPubMedGoogle Scholar
  4. 4.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. doi 10.1063/1.464913CrossRefGoogle Scholar
  5. 5.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 2, p. 1372. doi 10.1063/1.464304CrossRefGoogle Scholar
  6. 6.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. (B), 1988, vol. 37, no. 2, p. 785. doi 10.1103/PhysRevB.37.785CrossRefGoogle Scholar
  7. 7.
    Becke, A.D., Phys. Rev. (A), 1988, vol. 38, no. 6, p. 3098. doi 10.1103/PhysRevA.38.3098CrossRefGoogle Scholar
  8. 8.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865. doi 10.1103/PhysRevLett.77.3865; Phys. Rev. Lett., 1997, vol. 78, no. 7, p. 1396. doi 10.1103/PhysRevLett.78.1396CrossRefGoogle Scholar
  9. 9.
    Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, no. 13, p. 6158. doi 10.1063/1.478522CrossRefGoogle Scholar
  10. 10.
    Balducci, G., Gigli, G., and Guido, M., J. Chem. Phys., 1986, vol. 85, no. 10, p. 5955. doi 10.1063/1.451507CrossRefGoogle Scholar
  11. 11.
    Nakayama, M., Xue, M., An, W., Liu, P., and White, M.G., J. Phys. Chem. (C), 2015, vol. 119, no. 43, p. 14756. doi 10.1021/acs.jpcc.5b00691CrossRefGoogle Scholar
  12. 12.
    Zhai, H.-J., Döbler, J., Sauer, J., and Wang, L.-S., J. Am. Chem. Soc., 2007, vol. 129, no. 43, p. 13270. doi 10.1021/ja0750874CrossRefPubMedGoogle Scholar
  13. 13.
    Takatsuka, K., Fueno, T., and Yamaguchi, K., Theor. Chim. Acta, 1978, vol. 48, no. 3, p. 175. doi 10.1007/BF00549017CrossRefGoogle Scholar
  14. 14.
    Semenov, S.G., Bedrina, M.E., Klemeshev, V.A., and Makarova, M.V., Opt. Spectrosc., 2014, vol. 117, no. 4, p. 173. doi 10.1134/S0030400X14100191CrossRefGoogle Scholar
  15. 15.
    Dolg, M., Stoll, H., Savin, A., and Preuss, H., Theor. Chim. Acta, 1989, vol. 75, no. 3, p. 173. doi 10.1007/BF00528565CrossRefGoogle Scholar
  16. 15a.
    Dolg, M., Stoll, H., and Preuss, H., J. Chem. Phys., 1989, vol. 90, no. 3, p. 1730. doi 10.1063/1.456066CrossRefGoogle Scholar
  17. 15b.
    Andrae, D., Häussermann, U., Dolg, M., Stoll, H., and Preuss, H., Theor. Chim. Acta, 1990, vol. 77, no. 2, p. 123. doi 10.1007/BF01114537CrossRefGoogle Scholar
  18. 16.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar,, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Rev. D.01. Wallingford CT: Gaussian, Inc., 2013.Google Scholar
  19. 17.
    Mann, J.E., Waller, S.E., Rothgeb, D.W., and Jarrold, C.C., J. Chem. Phys., 2011, vol. 135, no. 10, p. 104317. doi 10.1063/1.3634011CrossRefPubMedGoogle Scholar
  20. 18.
    Vyboishchikov, S.F. and Sauer, J., J. Phys. Chem., 2001, vol. 105, no. 37, p. 8588. doi 10.1021/jp012294wCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. G. Semenov
    • 1
  • M. E. Bedrina
    • 2
  • V. A. Klemeshev
    • 2
  • A. V. Titov
    • 1
  1. 1.B.P. Konstantinov Petersburg Institute of Nuclear Physics, “Kurchatov Institute” National Research CenterOrlova RoshchaGatchina, St. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations