Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 3, pp 573–579 | Cite as

Synthesis of Pd(II), Ag(I), Pt(IV), and Hg(II) Complexes with Nifuroxazide, Their Structure, DFT Modeling, and Antimicrobial and Anticancer Activity

  • M. Y. Nassar
  • W. H. El-Shwiniy
  • S. I. El-Desoky
Article
  • 25 Downloads

Abstract

New mononuclear complexes of Pd(II), Ag(I), Pt(IV), and Hg(II) with nifuroxazide were synthesized by the reaction of the metals salts with the drug. The complexes were characterized by elemental and thermal analysis and FT-IR, 1H NMR, and UV–Vis spectra. Stoichiometry of the complexes was determined to be 1: 2. Nifuroxazide (Nif.) drug is coordinated to the metal ions as a bidentate ligand via oxygen and nitrogen atoms of the C=O and hydrazone groups. Density functional theory (DFT) calculations were carried out at the B3LYP levels with LANL2DZ basis set for Ag(I) and Hg(II) ions, LANL2MB basis set for Pd(II) and Pt(IV) ions, and 6-31G(d,p) basis set for the other atoms. The complexes had high thermal stability. Tests for anticancer activity, breast cancer cell line (MCF7), demonstrated that Hg(II), Pt(IV), and Pd(II) metal complexes had higher activity than the free ligand.

Keywords

nifuroxazide drug DFT calculation 1H NMR spectra thermal analysis anticancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edwards, D.I., Biochem. Pharmacol., 1986, vol. 35, p. 53. doi 10.1016/0006-2952(86)90554-XCrossRefGoogle Scholar
  2. 2.
    Adama, G.E. and Strarford, I.J., Biochem. Pharmacol., 1986, vol. 35, p. 71. doi 10.1016/0006-2952(86)90560-5CrossRefGoogle Scholar
  3. 3.
    Wardman, P., Environ. Heath Perspect., 1985, vol. 64, p. 309.CrossRefGoogle Scholar
  4. 4.
    Léonard, F., Andrémont, A., and Tancréde, C., J. Appl. Bacteriol., 1985, vol. 58, p. 545 doi 10.1111/j.1365-2672.1985.tb01710.xCrossRefGoogle Scholar
  5. 5.
    Khan, M.A., Ali, S.K., and Bouet, G.M., J. Inorg. Biochem., 2002, vol. 90, p. 67. doi 10.1016/S0162-0134 (02)00371-9CrossRefGoogle Scholar
  6. 6.
    The Merck Index, 9th ed., Merck, USA, 1971.Google Scholar
  7. 7.
    Thabaut, A. and Durosoir, J.L., Gazette Méd. France, 1978, vol. 85, p. 4516.Google Scholar
  8. 8.
    Wesam, S.S. and El-Shwiniy, W.H., J. Iran. Chem. Soc., 2018, vol. 15, p. 431. doi 10.1007/s13738-017-1244-4CrossRefGoogle Scholar
  9. 9.
    Mansour, A.M., Polyhedron, 2015, vol. 78, p. 10. doi 10.1016/j.poly.2014.04.020CrossRefGoogle Scholar
  10. 10.
    Frisch, M.J., Trucks, G.W., Schlege, l H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., PeterssonBloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr.J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision C.01. Gaussian, Wallingford, 2010.Google Scholar
  11. 11.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. doi 10.1063/1.464913CrossRefGoogle Scholar
  12. 12.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev., 1988, vol. 37, p. 785. doi 10.1103/PhysRevB.37.785CrossRefGoogle Scholar
  13. 13.
    Computer Program GaussView, Version 5.0.9, Gaussian, Wallingford.Google Scholar
  14. 14.
    Khan, A., Rahman, M., and Islam, S., Turk. J. Biol., 2007, vol. 31, p. 167.Google Scholar
  15. 15.
    Dash, S., Nath, L.K., Bhise, S., and Bhuyan, N., Trop. J. Pharm. Res., 2005, vol. 4, p. 341. doi 10.4314/tjpr.v4i1.3Google Scholar
  16. 16.
    Monnat, Jr., R.J. and Saintigny, Y., Sci. Aging Knowl. Environ., 2004, vol. 13, p. 1.Google Scholar
  17. 17.
    Mosmann, T., J. Immunol. Methods, 1983, vol. 65, p. 55.CrossRefGoogle Scholar
  18. 18.
    Saotome, K., Morita, H., and Umeda, M., Toxicol. in vitro, 1989, vol. 3, p. 317. doi 10.1016/0887-2333(89) 90039-8CrossRefGoogle Scholar
  19. 19.
    Wilson, A.P., Cytotoxicity and Viability Assays in Animal Cell Culture: A Practical Approach, Masters, J.R.W., Ed., Oxford University Press: Oxford, 2000, 3rd ed., vol. 1, p. 175.Google Scholar
  20. 20.
    Geary, W.J., Coord. Chem. Rev., 1971, vol. 7, p. 81. doi 10.1016/S0010-8545(00)80009-0CrossRefGoogle Scholar
  21. 21.
    Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986, 4th ed., p. 230.Google Scholar
  22. 22.
    Nassar, M.Y., Mohamed, T.Y., and Ahmed, I.S., J. Mol. Struct., 2013, vol. 1050, p. 81. doi 10.1016/j.molstruc.2013.07.027CrossRefGoogle Scholar
  23. 23.
    El-Shwiniy, W.H. and Sadeek, S.A., Spectrochim. Acta Part A, 2015, vol. 137, p. 535. doi 10.1016/j.saa.2014.08.124CrossRefGoogle Scholar
  24. 24.
    Sadeek, S.A., El-Shwiniy, W.H., J. Iran. Chem. Soc., 2017, vol. 14, p. 1711. doi 10.1007/s13738-017-1112-2CrossRefGoogle Scholar
  25. 25.
    King, D.E., Malone, R., and Lilley, S.H., Am. Fam. Phys., 2000, vol. 61, p. 2741.Google Scholar
  26. 26.
    Patai, S., Chemistry of the Carbon-Nitrogen Double Bond, New York: Wiley, 1970, p. 238.CrossRefGoogle Scholar
  27. 27.
    Sadeek, A.S, Abd El-Hamid, S.M., and El-Shwiniy, W.H., Res. Chem. Intermed., 2016, vol. 42, p. 3183. doi 10.1007/s11164-015-2205-0CrossRefGoogle Scholar
  28. 28.
    Nour, E.M., Alnami, I.S., and Alem, N.A., J. Phys. Chem. Solids, 1992, vol. 53, p. 197. doi 10.1016/0022-3697(92)90028-CCrossRefGoogle Scholar
  29. 29.
    Nassar, M.Y., El-Shwiniy, W.H., El-Sharkawy, A.M., and El-Desoky, S.I., J. Iran. Chem. Soc., 2018, vol. 15, p. 269. doi 10.1007/s13738-017-1229-3CrossRefGoogle Scholar
  30. 30.
    Abdel Aziz, A.A., Salem, A.M., Sayed, M.A., and Aboaly, M.M., J. Mol. Struct., 2012, vol. 1010, p 130. doi 10.1016/j.molstruc.2011.11.043Google Scholar
  31. 31.
    Reddy, P.J., Chacko, K.K., Aoki, K., Yamazaki, H., and Salas-peregrin, J.M., J. Crystallogr. Spectrosc. Res., 1990, vol. 20, p. 301.CrossRefGoogle Scholar
  32. 32.
    Clemente, D.A. and Marzotto, A., J. Chem. Cryst., 2003, vol. 33, p. 933.CrossRefGoogle Scholar
  33. 33.
    Jamroz, M.H., Vibrational Energy Distribution Analysis, VEDA4Computer Program, Poland, 2004.Google Scholar
  34. 34.
    Sadeek, A.S. and El-Shwiniy, W.H., J. Coord. Chem., 2010, vol. 63, p. 3471. doi 10.1080/00958972.2010.514049CrossRefGoogle Scholar
  35. 35.
    Khansari, A., Enhessari, M., and Salavati-Niasari, M., J. Cluster Sci., 2013, vol. 24, p. 289. doi 10.1007/s10876-012-0521-8CrossRefGoogle Scholar
  36. 36.
    Efthimiadou, E.K., Katsaros, N., Karaliota, A., and Psomas, G., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 1238. doi 10.1016/j.bmcl.2006.12.032CrossRefGoogle Scholar
  37. 37.
    Dharmaraj, N., Viswanathamurthi P., and Natarajan, K., Transit. Met. Chem., 2001, vol. 26, p. 105.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. Y. Nassar
    • 1
  • W. H. El-Shwiniy
    • 2
  • S. I. El-Desoky
    • 1
  1. 1.Chemistry Department, Faculty of ScienceBenha UniversityBenhaEgypt
  2. 2.Department of Chemistry, Faculty of ScienceZagazig UniversityZagazigEgypt

Personalised recommendations