Russian Journal of General Chemistry

, Volume 88, Issue 3, pp 528–531 | Cite as

Preparation of Photocatalytically Active Titanium Dioxide Doped with Transition Metal Oxides

  • A. V. Zdravkov
  • V. A. Gorbunova
  • A. V. Volkova
  • N. N. Khimich
Article
  • 1 Downloads

Abstract

A number of anatase derivatives doped with iron, yttrium, and vanadium oxides were synthesized in a pressure reactor at 250°C by the solvothermal method in a solution of anhydrous capronic acid. It was shown that at certain iron and yttrium concentrations the photocatalytic activity of obtained samples exceeds the activity of the titanium dioxide nanopowder Aeroxide® P25 used as a standard.

Keywords

titanium dioxide photocatalysis solvothermal synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mori, K., J. Soc. Powder Technol. Japan, 2004, vol. 41, p. 750.Google Scholar
  2. 2.
    Hisatomi, T., Kubota, J., and Domen, K., Chem. Soc. Rev., 2014, vol. 43, p. 7520. doi 10.1039/C3CS60378DCrossRefGoogle Scholar
  3. 3.
    Sano, T. Negishi, N., Koike, K., Takeuchi, K., and Matsuzawa, S., J. Mater. Chem., 2004, vol. 14, p. 380. doi 10.1039/B311444ACrossRefGoogle Scholar
  4. 4.
    Hashimoto, K., Irie, H., and Fujishima, A., Japan. J. Appl. Phys., 2005, vol. 44, p. 8269. doi 10.1143/JJAP.44.8269CrossRefGoogle Scholar
  5. 5.
    Mahlambi, M.M., Ngila, C.J., and Bhekie, B., J. Nanomater., 2015. doi 10.1155/2015/790173Google Scholar
  6. 6.
    Khan, M.M., Ansari, S.A., Pradhan, D., Ansari, M.O., Han, D.H., Lee, J., and Cho, M.H., J. Mater. Chem. A, 2014, vol. 2, p. 637. doi 10.1039/C3TA14052KCrossRefGoogle Scholar
  7. 7.
    Tieng, S., Kanaev, A., and Chhor, K., Appl. Cat. A, 2011, vol. 399, p. 191. doi 10.1016/j.apcata.2011.03.056CrossRefGoogle Scholar
  8. 8.
    Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O’Shea, K., Entezari, M.H., and Dionysiou, D.D., Appl. Cat. B, 2012, vol. 125, p. 331. doi 10.1016/j.apcatb.2012.05.036CrossRefGoogle Scholar
  9. 9.
    Zhang, L. and Webster, T.J., Nano Today, 2009 vol. 4, no. 1, p. 66. doi 10.1016/j.nantod.2008.10.014CrossRefGoogle Scholar
  10. 10.
    Lee, M.M., Teuscher, J., Miyasaka, T, Murakami, T.N., and Snaith, H., Science, 2012, vol. 338, p. 643. doi 10.1126/science.1228604CrossRefGoogle Scholar
  11. 11.
    Tieng, S., Kanaev, A., and Chhor, K., Appl. Cat. A, 2011, vol. 399, nos. 1–2, p. 191. doi 10.1016/j.apcata.2011.03.056CrossRefGoogle Scholar
  12. 12.
    Li, H., Yin, S, Wang, Y., and Sato, T., Appl. Cat. B, 2013, vols. 132–133, p. 487. doi 10.1016/j.apcatb.2012.12.026CrossRefGoogle Scholar
  13. 13.
    Hirano, M. and Sato, S., J. Am. Ceram. Soc., 2012, vol. 95, no. 11, p. 3408. doi 10.1111/j.1551-2916.2012.05385CrossRefGoogle Scholar
  14. 14.
    Filippo, E. Carlucci, C., Capodilupo, A.L., Perulli, P., Conciauro, F., Corrente, G.A., Gigli, G., and Ciccarella, G., Mater. Res., 2015, vol. 18, p. 473.CrossRefGoogle Scholar
  15. 15.
    Zainullina, V.M., Zhukov, V.P., Krasil’nikov, V.N., Yanchenko, M.Yu., Buldakova, L.Yu., and Polyakov, E.V., Phys. Solid State, 2010, vol. 52, no. 2, p. 271. doi 10.1134/S1063783410020095CrossRefGoogle Scholar
  16. 16.
    Seo, H-K., Elliott, C.M., and Ansari, S.G., J. Nanosci. Nanotechnol., 2012, vol. 12, no. 9, p. 6996. doi 10.1166/jnn.2012.6517CrossRefGoogle Scholar
  17. 17.
    He, D., Li, Y., Wang, J., Yang, Y., and An, Q., Appl. Microcopy, 2016, vol. 46, no. 1, p. 37. doi 10.9729/AM.2016.46.1.37CrossRefGoogle Scholar
  18. 18.
    Zhou, W., Zhang, P., and Lium, W., Int. J. Photoenergy, 2012, p. 1.Google Scholar
  19. 19.
    Zhou, W. and He, Y., Chem. Eng. J., 2012, vol. 179, p. 412. doi 10.1016/j.cej.2011.10.094CrossRefGoogle Scholar
  20. 20.
    Kharlamova, M.V., Kolesnik, I.V., Eliseev, A.A., Lukashin, A.V., and Tret’yakov, Yu.D., Alternat. Energetika Ekologoya, 2007, no. 7, p. 36.Google Scholar
  21. 21.
    Arconada, N., Duran, A., Suarez, S., Portela, R., Coronado, J.M., Sánchez, B., and Castro, Y., Appl. Cat. B, 2009, vol. 86, no. 1, p. 1. doi 10.1016/j.apcatb.2008.07.021CrossRefGoogle Scholar
  22. 22.
    Arconada, N, Castro, Y., and Duran, A., Appl. Cat. A, 2010, vol. 385, no. 1, p. 101. doi 10.1016/j.apcata.2010.06.051CrossRefGoogle Scholar
  23. 23.
    Lin, H., Oliveira, P.W., Grobelsek, I., Haettich, A., and Veith, M., Z. Anorg. Allg. Chem., 2010, vol. 636, no. 11, p. 1947. doi doi/zaac.201000073CrossRefGoogle Scholar
  24. 24.
    Bae, B-J., Lee, K., Seo, W.S., Miah, M.A., Kim K.-C., and Park, J.T., Bull. Corean. Chem. Soc., 2004, vol. 25, no. 11, p. 1661. doi 10.5012/bkcs.2004.25.11.1661CrossRefGoogle Scholar
  25. 25.
    Trentler, T.J., Denler, T.E., Bertone, J.F., Agrawal, A., and Colvin, V.L., J. Am. Chem. Soc., 1999, vol. 121, no. 7, p. 1613. doi 10.1021/ja983361bCrossRefGoogle Scholar
  26. 26.
    Koo, B., Park, J., Kim, Y, Kim, Y., Choi, S.-H., Sung, Y.-E., and Hyeon, T., J. Phys. Chem. (B), 2006, vol. 110, no. 48 p. 24318. doi 10.1021/jp065372uGoogle Scholar
  27. 27.
    Zdravkov, A., Kudryashova, J., Kanaev, A., Povolotskiy, A., Volkova, A., Golikova, E., and Khimich, N., Mater. Chem. Phys., 2015, vol. 160, p. 73. doi 10.1016/j.matchemphys.2015.04.008CrossRefGoogle Scholar
  28. 28.
    Bradley, D.C., Multani, R.K., and Wardlaw, W., Chem. Soc., 1958, p. 4153. doi 10.1039/JR9580004153Google Scholar
  29. 29.
    Magomedov, G.K.-I., Morozova, L.V., Kussainova, K.M., Blokhina, E.I., Medvedeva, A.V., and Beletskaya, I.P., Zh. Obshch. Khim., 1989, vol. 59, no. 8, p. 1777.Google Scholar
  30. 30.
    Poncelet, O., Sartain, W.J., Hubert-Pfalzgraf, L.G., Folting, K., Caulton, K.G., Inorg. Chem., 1989, vol. 28, no. 2, p. 263. doi 10.1021/ic00301a021CrossRefGoogle Scholar
  31. 31.
    Hetch, H., Jander, G., and Schlapmann, H., Z. Anorg. Allgem. Chem., 1947, vol. 254, p. 255. doi zaac. 19472540501CrossRefGoogle Scholar
  32. 32.
    Zdravkov, A.V., Gorbunova, M.A., Koptelova, L.A., and Khimich, N.N., Russ. J. Gen. Chem., 2016, vol. 86, no. 2, p. 219. doi 10.1134/S1070363216020031CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Zdravkov
    • 1
  • V. A. Gorbunova
    • 2
  • A. V. Volkova
    • 3
  • N. N. Khimich
    • 4
  1. 1.Grebenshchikov Institute of Chemistry of SilicatesRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State University of Plant PolymersSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Kirov Military-Medical AcademySt. PetersburgRussia

Personalised recommendations