Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 2, pp 288–294 | Cite as

Synthesis of Nickel Nanoparticles by the Reduction of Its Salts Using the Modified Polyol Method in the Presence of Sodium Polyacrylates with Various Molecular Weights

  • O. A. Logutenko
  • A. I. Titkov
  • A. M. Vorob’ev
  • I. K. Shundrina
  • Yu. M. Yukhin
  • N. Z. Lyakhov
Article
  • 18 Downloads

Abstract

Nickel nanoparticles were synthesized by the reduction of its salts by hydrazine hydrate in a polyol medium in the presence of sodium polyacrylates with molecular weights of 1200, 5100, and 8000. The nanoparticles were characterized by X-ray diffraction, scanning and transmission electron microscopy, IR spectroscopy, and thermogravimetric analysis. The effect of the synthesis conditions, such as temperature, molecular weight of sodium polyacrylate, and polyol and precursor types, on the reduction products were studied. It was shown that the average particle sizes, their aggregation and polydispersity degrees increase as the polymer molecular weight increases.

Keywords

nano nickel sodium polyacrylate ethylene glycol hydrazine hydrate reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu, Z., Guo, X., Wu, S., Zhang, R, Wang, J., and Li, L., Ind. Eng. Chem. Res., 2011, vol. 50, no. 24, p. 13848. doi 10.1021/ie2017306CrossRefGoogle Scholar
  2. 2.
    Gubin, S.P., Koksharov, Yu A., Khomutov, G.B., and Yurkov, G.Yu., Russ. Chem. Rev., 2005, vol. 74, no. 6, p. 489. doi RC2005v074n06ABEH000897CrossRefGoogle Scholar
  3. 3.
    Gusev, A.I., Usp. Fiz. Nauk, 1998, vol. 168, no. 1, p. 55. doi 10.3367/UFNr.0168.199801c.0055.CrossRefGoogle Scholar
  4. 4.
    Wu, Z.G., Munoz, M., and Montero, O., Adv. Powder Technol., 2010, vol. 21, no. 2, p. 165. doi 10.1016/j.apt.2009.10.012CrossRefGoogle Scholar
  5. 5.
    Umegaki, T., Yan, J.-M., Zhang, X.-B., Shioyama, H., Kuriyama, N., and Xu, Q., Int. J. Hydrogen Energy, 2009, vol. 34, no. 9, p. 3816. doi 10.1016/j.ijhydene.2009.03.003CrossRefGoogle Scholar
  6. 6.
    Hou, Y.-L. and Gao, S., J. Alloys Products Compd., 2004, vol. 365, nos. 1–2, p. 112. doi10.1016/S0925-8388(03)00651-0CrossRefGoogle Scholar
  7. 7.
    Couto, G.G., Klein, J.J., Schreiner, W.H., Mosca, D.H., de Oliveira, A.J.A., and Zarbin, A.J.G., J. Colloid Interface Sci., 2007, vol. 311, no. 2, p. 461. doi 10.1016/j.jcis.2007.03.045CrossRefGoogle Scholar
  8. 8.
    Singh, W., Kumar, M, Stepanek, F., Ulbrich, P., Svoboda, P., Santava, E., and Singla, M.L., Adv. Mater. Lett., 2011, vol. 2, no. 6, p. 409. doi 10.5185/amlett.2011.4257CrossRefGoogle Scholar
  9. 9.
    Roy, P.S. and Bhattacharya, S.K., RSC Adv., 2014, vol. 4, p. 13892. doi 10.1039/C4RA00426DCrossRefGoogle Scholar
  10. 10.
    Petroski, J.M., Wang, Z.L., Green, T.C., and El-Sayed, M.A., J. Phys. Chem. B, 1998, vol. 102, no. 18, p. 3316. doi 10.1021/jp981030fCrossRefGoogle Scholar
  11. 11.
    Petroski, J.M. and El-Sayed, M.A., Phys. Chem. A, 2003, vol. 107, no. 40, p. 8371. doi 10.1021/jp0300694CrossRefGoogle Scholar
  12. 12.
    Prucek, R., Kvítek, L., Panáček, A., Vančurová, L., Soukupová, J., Jančík, D., and Zboril, R., J. Mater. Chem., 2009, vol. 19, p. 8463. doi 10.1039/b913561hCrossRefGoogle Scholar
  13. 13.
    Prucek, R., Panáček, A., Filip, J., Kvítek, L., and Zbořil, R., Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2014, vol. 8, no. 6, p. 503.Google Scholar
  14. 14.
    Panáček, A., Prucek, R., Hrbáč, J., Nevečná, T., Šteffková, J., Radek Zbořil, R., and Kvítek, L., Chem. Mater., 2014, vol. 26, p. 1332. doi 10.1021/cm400635zCrossRefGoogle Scholar
  15. 15.
    Logutenko, O.A., Titkov, A.i., Vorob’ev, Yukhin, Yu.M., and Lyakhov, N.Z., Khim. v Interesakh Ustoicivogo Razvitiya, 2016, vol. 24, no. 5, p. 619.Google Scholar
  16. 16.
    Rietveld, H.M., J. Appl. Cryst., 1969, vol. 2, no. 2, p. 65. doi 10.1107/S0021889869006558CrossRefGoogle Scholar
  17. 17.
    Shimmin, R.G., Schoch, A.B., and Braun, P.V., Langmuir, 2004, vol. 20, no. 13, p. 5613. doi 10.1021/la036365pCrossRefGoogle Scholar
  18. 18.
    Palacios, E.G., Juarez-Lopeza, G., and Monhemius, A.J., Hydrometallurgy, 2004, vol. 72, p. 139.CrossRefGoogle Scholar
  19. 19.
    Deacon, G.B. and Phillips, R.J., Coord. Chem. Rev., 1980, vol. 33, p. 227. doi 10.1016/S0010-8545(00) 80455-5CrossRefGoogle Scholar
  20. 20.
    Kriza, A., Ababei, L.V., Cioatera, N., Stanica, I., and Stanica, N., Serb. Chem. Soc., 2010, vol. 75, p. 229.CrossRefGoogle Scholar
  21. 21.
    Chhabra, J.S., Talawar, M.B., Makashir, P.S., Asthana, S., and Singh, H., J. Hazar. Mater. (A), 2003, vol. 99, p. 225. doi 10.1016/S0304-3894(02)00247-9CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. A. Logutenko
    • 1
  • A. I. Titkov
    • 1
  • A. M. Vorob’ev
    • 1
  • I. K. Shundrina
    • 2
  • Yu. M. Yukhin
    • 1
  • N. Z. Lyakhov
    • 1
  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.N.N. Vorozhtsov Institute of Organic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations