Russian Journal of General Chemistry

, Volume 87, Issue 12, pp 3043–3051 | Cite as

Synthesis of Nano-Metric Gold Complexes with New Schiff Bases Derived from 4-Aminoantipyrene, Their Structures and Anticancer Activity

  • K. S. A. Abou Melha
  • G. A. A. Al-Hazmi
  • M. S. Refat
Letters to the Editor


Two new Schiff bases derived from combination of 4-aminoantipyrine with ethylenediamine (L1) or benzaldehyde (L2), gave Au(III) complexes. Their structures were elucidated from microanalytical, magnetic, conductance, and FT-IR, UV-Vis, Mass, and 1H and 13C NMR spectral data. High conductance values indicated electrolytic nature of the complexes. Magnetic moments and electronic spectral data indicated that two synthesized Au(III) Schiff base complexes had a square planar geometry. FT-IR spectroscopic data demonstrated that the Schiff bases were coordinated to Au(III) ions in a tetradentate manner with NNNN donor sites of two 4-amino antipyrine and two azomethine (L1), while L2 Schiff base ligand coordinated to Au(III) ions via its four azomethine nitrogen, which was further supported by the appearance of new bands in IR spectra due to ν(M–N). Activation thermodynamic parameters (E*, ΔH*, ΔS*, and ΔG*) were calculated on the basis of TG curves. Crystalline structures of Schiff bases and their Au(III) complexes were characterized by X-ray diffraction (XRD), their morphology was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Schiff base ligands and their Au(III) chelates were screened for their antimicrobial activity. Cytotoxic activity of those was tested against the human breast cancer (MCF-7) and human hepatocellular carcinoma (HepG-2) tumor cell lines.


4-aminoantipyrine gold Schiff base chelates nanoscale spectroscopic morphology antimicrobial activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, R.K., Sharma, D., Singh, L., and Agarwal, H., Bioinorg. Chem. Appl., 2006, vol. 2006, p. 1. doi 10.1155/BCA/2006/29234Google Scholar
  2. 2.
    Bauer, A.W., Kirby, W.A., Sherris, C., and Turck, M., Am. J. Clin. Pathology, 1966, vol. 45, p. 493.CrossRefGoogle Scholar
  3. 3.
    Pfaller, M.A., Burmeister, L., Bartlett, M.A., and Rinaldi, M.G., J. Clin. Microbiol., 1988, vol. 26, p. 1437.Google Scholar
  4. 4.
    National Committee for Clinical Laboratory Standards, Performance Volume. Antimicrobial Ausceptibility of Flavobacteria, 1997.Google Scholar
  5. 5.
    Mosmann, T., J. Immunol. Methods, 1983, vol. 55, p. 65. doi 10.1016/0022-1759(83)90303-4Google Scholar
  6. 6.
    Yousef, T.A., Abu El-Reash, G.M., and El Morshedy, R.M., J. Mol. Struct., 2013, vol. 1045, p. 145. doi 10.1016/j.molstruc.2013.03.060CrossRefGoogle Scholar
  7. 7.
    Helal, M.H., El-Awdan, S.A., Salem, M.A., Abd-elaziz, T.A., Moahamed, Y.A., El-Sherif, A.A., and Mohamed, G.A.M., Spectrochim. Acta, Part A, 2015, vol. 135, p. 764. doi 10.1016/j.saa.2014.06.145.CrossRefGoogle Scholar
  8. 8.
    Hyper Chem, Version 7.51 Hyper cube, INC.Google Scholar
  9. 9.
    Refat, M.S., J. Mol. Struct., 2007, vol. 842, p. 24. doi 10.1016/j.molstruc. 2006.12.006.CrossRefGoogle Scholar
  10. 10.
    Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiely, 1978.Google Scholar
  11. 11.
    Abdalrazaq, E.A., Buttrus, N.H., and Abd Al-Rahman, A.A., Asian J. Chem., 2010, vol. 22, p. 2179.Google Scholar
  12. 12.
    Tunney, J.M., Blake, A.J., Davies, E.S., Mcmater, J., Wilson, C., and Garner, C.D., Polyhedron, 2006, vol. 25, p. 591. doi 10.1016/j.poly.2005.09.002CrossRefGoogle Scholar
  13. 13.
    Coats, A.W. and Redfern, J.P., Nature, 1964, vol. 201, p. 68. doi 10.1038 /201068a0CrossRefGoogle Scholar
  14. 14.
    Maravalli, P.B. and Goudar, T.R., Thermochim Acta 1999, vol. 325, p. 35. doi 10.1016/S0040-6031(98) 00548-6CrossRefGoogle Scholar
  15. 15.
    Yusuff, K.K.M. and Sreekala, R., Thermochim Acta 1990, vol. 159, p. 357. doi 10.1016/0040-6031(90) 80121-E.CrossRefGoogle Scholar
  16. 16.
    Frost, A.A. and Peasron, R.G., Kinetics and Mechanism, New York: Wiley, 1961.Google Scholar
  17. 17.
    Cullity, B.D., Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, 1972, p. 102.Google Scholar
  18. 18.
    Salavati-Niasari, M., Mohandes, F., Davar, F., Mazaheri, M., Monemzadeh, M., and Yavarinia, N., Inorg. Chim. Acta 2009, vol. 362, p. 3691. doi 10.1016/j.ica.2009.04.025.CrossRefGoogle Scholar
  19. 19.
    Velumani, S., Mathew, X., and Sebastian, P.J., Solar Energy Mater. Solar Cells, 2003, vol. 76, p. 359. doi 10.1016/S0927-0248(02)00288-XCrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Wei, S., and Chen, S., Int. J. Electrochem. Sci., 2013, vol. 8, p. 6493.Google Scholar
  21. 21.
    Shi, W., Casas, J., Venkataramasubramani, M., and Tang, L., Int. Scholar. Res. Network ISRN Nanomater., 2012, vol. 2012, p. 1. doi 10.5402/2012/659043.CrossRefGoogle Scholar
  22. 22.
    Monshi, A., Foroughi, M.R., and Monshi, M.R. World J. Nano. Sci. Engin., 2012, vol. 2, p. 154. doi 10.4236/wjnse.2012.23020CrossRefGoogle Scholar
  23. 23.
    Haergreaves, M.K., Pritchard, J.G., and Dave, H.R., Chem. Res., 1970, vol. 70, p. 439. doi 10.1021/cr60266a001.Google Scholar
  24. 24.
    Dharmaraj, N., Viswanathamurthi, P., and Natarajan, K., Trans. Met. Chem., 2001, vol. 26, p. 105. doi 10.1023/A:100713240CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • K. S. A. Abou Melha
    • 1
  • G. A. A. Al-Hazmi
    • 2
    • 3
  • M. S. Refat
    • 4
    • 5
  1. 1.Chemistry Department, Faculty of Science of Girls, AbhaKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Chemistry Department, Faculty of Applied SciencesTaiz UniversityTaizYemen
  4. 4.Chemistry Department, Faculty of ScienceTaif UniversityAl-Hawiah, TaifSaudi Arabia
  5. 5.Department of Chemistry, Faculty of SciencePort Said UniversityPort SaidEgypt

Personalised recommendations