Russian Journal of General Chemistry

, Volume 87, Issue 12, pp 3036–3042 | Cite as

Synthesis of Homoleptic and Heteroleptic Ruthenium Complexes Appended with Glucosyl Ligand by the Click-to-Chelate Approach

  • N. Xiao
  • A. Cheng
  • Q. G. Zhu
  • Q. Cheng
  • R. B. Wu
  • B. R. Yu
  • Z. Wang
Letters to the Editor


Homoleptic and heteroleptic complexes of Ru(TAGP-tapy)3Cl2 {TAGP-tapy is 2-[1-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-1H-1,2,3-triazol-4-yl]-pyridine} bearing a clustered glucose-derived ligand and Ru(bpy)2(TAGP-tapy)Cl2 (bpy is 2,2'-bipyridine) have been synthesized by the chelating reaction of RuCl3·3H2O with TAGP-tapy and cis-Ru(bpy)2Cl2 with TAGP-tapy, respectively. The bidentate 1,2,3-triazolelinked glucose-derived ligand TAGP-tapy was prepared by copper-catalyzed coupling (click reaction) of 2-ethynylpyridine with acetyl protected glucosyl azide, 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl azide (TAGP-N3). TAGP-N3 was prepared by nucleophilic substitution reaction of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (TAGP-Br) with NaN3. These ruthenium complexes were purified by column chromatography or HPLC. Structures of the intermediates and ruthenium complexes were confirmed by HPLC, 1H and 13C NMR, FT-IR, and ESI-MS spectroscopies. UV-Vis and fluorescence spectroscopic methods were used to study optical properties of the ligand TAGP-tapy and ruthenium complexes. TAGP-tapy exhibited interesting solvent-polarity dependent fluorescence properties and a significant red-shift in emissions. Both complexes demonstrated distinctive fluorescence emission band in the visible region.


homoleptic ruthenium complex heteroleptic ruthenium complex glucosyl ligand click-to-chelate carbohydrate-protein interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, H., Lu, Q., Zuo, F., Yuan, R., and Chen, S., Sensor. Actuat. B-Chem., 2017, vol. 241, p. 887. doi 10.1016/j.snb.2016.11.013CrossRefGoogle Scholar
  2. 2.
    Wilkins, L.E., Phillips, D.J., Deller, R.C., Davies, G., and Gibson, M.I., Carbohyd. Res., 2015, vol. 405, p. 47. doi 10.1016/j.carres.2014.09.009CrossRefGoogle Scholar
  3. 3.
    Lundquist, J.J. and Toone, E.J., Chem. Rev., 2002, vol. 102, p. 555. doi 10.1021/cr000418fCrossRefGoogle Scholar
  4. 4.
    Stauffert, F., Bodlenner, A., Thi, M.N.T., Isabel Garcia-Moreno, M., Ortiz Mellet, C., Nierengarten, J., and Compain, P., New. J. Chem., 2016, vol. 40, p. 7421. doi 10.1039/c6nj01311bCrossRefGoogle Scholar
  5. 5.
    Tanaka, J., Gleinich, A.S., Zhang, Q., Whitfield, R., Kempe, K., Haddleton, D.M., Davis, T.P., Perrier, S., Mitchell, D A., and Wilson, P., Biomacromolecules, 2017, vol. 18, p. 1624. doi 10.1021/acs.biomac.7b00228CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Wang, C., Liu, Y., Yao, W., Sun, Y., Zhang, P., Huang, L., and Wang, Z., Eur Food. Res. Technol., 2014, 239, p. 867. doi 10.1007/s00217-014-2283-zCrossRefGoogle Scholar
  7. 7.
    Okada, T. and Minoura, N., J. Biomed. Opt., 2011, vol. 16, p. 2985. doi 10.1117/1.3558727CrossRefGoogle Scholar
  8. 8.
    Hoshino, Y., Ozaki, F., Igarashi, S., and Yukawa, Y., Inorg. Chim. Acta., 2011, vol. 374, p. 654. doi 10.1016/j.ica.2011.03.026CrossRefGoogle Scholar
  9. 9.
    Hara, D., Komatsu, H., Son, A., Nishimoto, S., and Tanabe, K., Bioconjugate Chem., 2015, vol. 26, p. 645. doi 10.1021/acs.bioconjchem.5b00093CrossRefGoogle Scholar
  10. 10.
    Cheng, F., Yu, S., Ren, M., He, C., and Yin, H., Transit. Metal. Chem., 2016, vol. 41, p. 305. doi 10.1007/s11243-016-0022-yCrossRefGoogle Scholar
  11. 11.
    Zeng, C., Zhang, C., Lai, S., Tang, B., Wan, D., and Liu, Y., Transit. Metal. Chem., 2016, vol. 41, p. 923. doi 10.1007/s11243-016-0096-6CrossRefGoogle Scholar
  12. 12.
    Kaushal, R. and Sheetal., Russ. J. Gen. Chem., 2016, vol. 86, p. 360. doi 10.1134/S1070363216020274CrossRefGoogle Scholar
  13. 13.
    Zdravkov, A.V., Koptelova, L.A., Novikov, A.V., and Khimich, N N., Russ. J. Gen. Chem., 2008, vol. 78, p. 1938. doi 10.1134/S1070363208100204CrossRefGoogle Scholar
  14. 14.
    Zhang, C., Shen, X., Sakai, R., Gottschaldt, M., Schubert, U.S., Hirohara, S., Tanihara, M., Yano, S., Obata, M., Xiao, N., Satoh, T., and Kakuchi, T., J. Polym. Sci. Pol. Chem., 2011, vol. 49, p. 746. doi 10.1002/pola.24487CrossRefGoogle Scholar
  15. 15.
    Xiao, N., Chen, Y., Shen, X., Zhang, C., Yano, S., Gottschaldt, M., Schubert, U.S., Kakuchi, T., and Satoh, T., Polym. J., 2013, vol. 45, p. 216. doi 10.1038/pj.2012.100CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Xiao, N., Fukuoka, M., Yoshida, K., Duan, Q., Satoh, T., and Kakuchi, T., Polym. Chem-Uk., 2015, vol. 6, p. 3608. doi 10.1039/c5py00277jCrossRefGoogle Scholar
  17. 17.
    Chen, Y., Xiao, N., Satoh, T., and Kakuchi, T., Polym. Chem-Uk., 2014, vol. 5, p. 4993. doi 10.1039/c4py00314dCrossRefGoogle Scholar
  18. 18.
    Percec, V., Leowanawat, P., Sun, H., Kulikov, O., Nusbaum, C.D., Tran, T.M., Bertin, A., Wilson, D.A., Peterca, M., Zhang, S., Kamat, N.P., Vargo, K., Moock, D., Johnston, E.D., Hammer, D.A., Pochan, D J., Chen, Y., Chabre, Y.M., Shiao, T.C., Bergeron-Brlek, M., Andre, S., Roy, R., Gabius, H., and Heiney, P.A., J. Am. Chem. Soc., 2013, vol. 135, p. 9055. doi 10.1021/ja403323yCrossRefGoogle Scholar
  19. 19.
    Kraft, J., Schmollinger, D., Maudrich, J., and Ziegler, T., Synthesis-Stuttgart., 2015, vol. 47, p. 199. doi 10.1055/s-0034-1379473Google Scholar
  20. 20.
    David, O., Maisonneuve, S., and Xie, J., Tetrahedron. Lett., 2007, vol. 48, p. 6527. doi 10.1016/j.tetlet.2007.07.071CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. Xiao
    • 1
  • A. Cheng
    • 1
  • Q. G. Zhu
    • 1
  • Q. Cheng
    • 1
  • R. B. Wu
    • 1
  • B. R. Yu
    • 1
  • Z. Wang
    • 1
  1. 1.School of Pharmaceutical SciencesCapital Medical UniversityBeijingChina

Personalised recommendations