Advertisement

Russian Journal of General Chemistry

, Volume 87, Issue 12, pp 2915–2921 | Cite as

Divalent Transition Metal Complexes of 2-(Pyridin-2-yl)imidazole: Evolved Gas Analysis Predicting Model to Provide Characteristic Coordination

  • R. Risoluti
  • G. Gullifa
  • M. A. Fabiano
  • R. Iona
  • F. Zuccatosta
  • L. W. Wo
  • S. Materazzi
Letters to the Editor
  • 14 Downloads

Abstract

Previously published studies on imidazole derivative ligands suggested two main characteristic complex structures that are independent on the central metal ion. By the thermally induced decomposition behaviors, two different systematic decomposition trends were proposed. In this work, one of these characteristic decomposition mechanisms was again found for precipitated 2-(pyridin-2-yl)imidazole complexes. The final goal of these serial studies is to provide, by experimental evidences, a prediction model of thermal stability and typical decomposition behavior by comparing the structural characteristics of precipitated complexes. 2-(Pyridin-2-yl)imidazole complexes with transition metal ions of the general formula M(PyIm)2(H2O)2 (where M = Cu, Fe, Ni, Pd, Pt, Zn) were synthesized, characterized, and studied by thermoanalytical techniques coupled to mass spectrometry, to suggest their decomposition mechanism by evolved gas analysis (EGA-MS). As experimentally demonstrated in previous works, these complexes can be precipitated with two methanol molecules in the structure. By differential scanning calorimetry it was shown that methanol molecules can be replaced by water molecules under controlled conditions.

Keywords

imidazole complexes transition metal complexes biomimetic complexes EGA TG-MS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batten, S.R. and Robson, R., Angew. Chem., Int. Ed., 1998, vol. 37, p. 1460. doi 10.1002/(SICI)1521-3773CrossRefGoogle Scholar
  2. 2.
    Reinhoudt, D.N., Stoddart, J.F., and Ungaro, R., Chem. Eur. J., 1998, vol. 4, p. 1349. doi 10.1002/(SICI)1521-3765CrossRefGoogle Scholar
  3. 3.
    Di Gioia, M.L., Leggio, A., Liguori, A., Perri, F., Siciliano, C., and Viscomi, M.C., Amino Acids, 2010, vol. 38, no. 1, p. 133. doi 10.1007/s00726-008-0221-8CrossRefGoogle Scholar
  4. 4.
    Materazzi, S., Peluso, G., Ripani, L., and Risoluti, R., Microchem. J., 2017, vol. 134, p. 277. doi 10.1016/j.microc.2017.06.014CrossRefGoogle Scholar
  5. 5.
    Pierre, D.H., and Daniel, F., Chem. Soc. Rev., 1998, vol. 171, p. 351.Google Scholar
  6. 6.
    Janiak, C., J. Chem. Soc., Dalton Trans., 2003, p. 2781. doi 10.1039/B305705BGoogle Scholar
  7. 7.
    Kitagawa, S., Kitaura, R., and Noro, S.I., Angew. Chem., Int. Ed. 2004, vol. 43, p. 2334. doi 10.1002/anie.200300610CrossRefGoogle Scholar
  8. 8.
    Aiello, D., Materazzi, S., Risoluti, R., Thangavel, H., Di Donna, L., Mazzotti, F., Siciliano, C., and Napoli, A., Mol. BioSyst., 2015, vol. 11, p. 2373. doi 10.1039/c5mb00148jCrossRefGoogle Scholar
  9. 9.
    Batten, S.R. and Murray, K.S., Coord. Chem. Rev., 2003, vol. 246, p. 103. doi 10.1016/S0010-8545(03) 00119-XCrossRefGoogle Scholar
  10. 10.
    Chand, B.G., Ray, U.S., Mostafa, G., Cheng, G., Lu, T.H., and Sinha, C., Inorg. Chim. Acta, 2005, vol. 358, p. 1927. doi 10.1016/j.ica.2004.12.046CrossRefGoogle Scholar
  11. 11.
    Gao, C., Wu, Y.Z., Gong, H.B., Hao, X.P., Xu, X.G., and Jiang, M.H., Inorg. Chem. Commun., 2008, vol. 11, p. 985. doi 10.1016/j.inoche.2008.05.008CrossRefGoogle Scholar
  12. 12.
    Zhou, J.H., Peng, Y.F., Zhang, Y.P., Li, B.L., and Zhang, Y., Inorg. Chem. Commun., 2004, vol. 7, p. 1181. doi 10.1016/j.inoche.2004.09.001CrossRefGoogle Scholar
  13. 13.
    Chen, H.J. and Chen, X.M., Inorg. Chim. Acta, 2002, vol. 329, p. 13. doi 10.1016/S0020-1693(01)00791-5CrossRefGoogle Scholar
  14. 14.
    Materazzi, S., Gregori, A., Ripani, L., Apriceno, A., and Risoluti, R., Talanta, 2017, vol. 166, p. 328 doi 10.1016/j.talanta.2017.01.045CrossRefGoogle Scholar
  15. 15.
    Takahashi, P.M., Melo, L.P., Frem, R.C.G., Netto, A.V.G., Mauro, A.E., Santos, R.H.A., and Ferreira, J.G., J. Mol. Struct., 2006, vol. 783, p. 161. doi 10.1016/j.molstruc.2005.08.031CrossRefGoogle Scholar
  16. 16.
    Bose, D., Banerjee, J., Rahaman, S.H., Mostafa, G., Fun, H.K., Walsh, R.D.B., Zaworotko, M.J., and Ghosh, B.K., Polyhedron, 2004, vol. 23, p. 2045. doi 10.1016/j.poly.2004.04.035CrossRefGoogle Scholar
  17. 17.
    Risoluti, R., Materazzi, S., Gregori, A., and Ripani, L., Talanta, 2016, vol. 153, p. 407. doi 10.1016/j.talanta.2016.02.044CrossRefGoogle Scholar
  18. 18.
    Banerjee, S., Wu, B., Lassahn, P.G., Janiak, C., and Ghosh, A., Inorg. Chim. Acta, 2005, vol. 358, p. 535. doi 10.1016/j.ica.2004.07.048CrossRefGoogle Scholar
  19. 19.
    Perrino, C., Marconi, E., Tofful, E., Farao, C., Materazzi, S., and Canepari, S., Atmos. Environ., 2012, vol. 54, p. 36. doi 10.1016/j.atmosenv.2012.02.078CrossRefGoogle Scholar
  20. 20.
    Turiák, L., Vékey, K., Indelicato, S., Bongiorno, D., Indelicato, S., Drahos, L., Turco Liveri, V., and Ceraulo, L., J. Mass Spectrom., 2013, vol. 48, p. 379. doi 10.1002/jms.3161CrossRefGoogle Scholar
  21. 21.
    Wanga, X.L., Yang, P.P., Li, Z.W., Li, C.L., and Liao, D.Z., Inorg. Chim. Acta, 2009, vol. 362, p. 1901. doi 10.1016/j.ica.2008.09.001CrossRefGoogle Scholar
  22. 22.
    Romolo, F.S., Ferri, E., Mirasoli, M., D’Elia, M., Ripani, L., Peluso, G., Risoluti, R., Maiolini, E., and Girotti, S., Forensic Sci. Int., 2015, vol. 246, p. 25. doi 10.1016/j.forsciint.2014.10.037CrossRefGoogle Scholar
  23. 23.
    Jin, F., Zhou, H.P., Wang, X.C., Hu, Z.J., Wu, J.Y., Tian, Y.P., and Jiang, M.H., Polyhedron, 2007, vol. 26, p. 1338. doi 10.1016/j.poly.2006.11.038CrossRefGoogle Scholar
  24. 24.
    Jin, F., Zhou, H.P., Wang, X.C., Hu, Z.J., Wu, J.Y., Tian, Y.P., and Jiang, M.H., J. Mol. Struct., 2007, vol. 829, p. 202. doi 10.1016/j.molstruc.2006.06.025CrossRefGoogle Scholar
  25. 25.
    Małecki, J.G., Polyhedron, 2010, vol. 29, p. 2489. doi 10.1016/j.poly.2010.05.019CrossRefGoogle Scholar
  26. 26.
    Materazzi, S., De Angelis Curtis, S., Vecchio Ciprioti, S., Risoluti, R., and Finamore, J., J. Therm. Anal. Calorim., 2014, vol. 116, p. 93. doi 10.1007/s10973-013-3495-3CrossRefGoogle Scholar
  27. 27.
    Kurdziel, K., Glowiak, T., Materazzi, S., and Jezierska, J., Polyhedron, 2003, vol. 22, p. 3123. doi 10.1016/j.poly.2003.07.004CrossRefGoogle Scholar
  28. 28.
    Thakurta, S., Butcher, R.J., Garcia, C.J.G., Garribba, E., and Mitra, S., Inorg. Chim. Acta, 2010, vol. 363, p. 3981. doi 10.1016/j.ica.2010.07.069CrossRefGoogle Scholar
  29. 29.
    Carranza, J., Sletten, J., Lloret, F., and Julve, M., Polyhedron, 2009, vol. 28, p. 2249. doi 10.1016/j.poly.2009.04.001CrossRefGoogle Scholar
  30. 30.
    Risoluti, R., Fabiano, M.A., Gullifa, G., Vecchio Ciprioti, S., and Materazzi, S., Appl. Spectrosc. Rev., 2017, vol. 52, p. 39. doi 10.1080/05704928.2016.1207658CrossRefGoogle Scholar
  31. 31.
    Materazzi, S. and Risoluti, R., Appl. Spectrosc. Rev., 2014, vol. 49, no. 8, p. 635. doi 10.1080/05704928.2014.887021CrossRefGoogle Scholar
  32. 32.
    Materazzi, S. and Vecchio, S., Appl. Spectrosc. Rev., 2013, vol. 48, p. 654. doi 10.1080/05704928.2013.786722CrossRefGoogle Scholar
  33. 33.
    Materazzi, S. and Vecchio, S., Appl. Spectrosc. Rev., 2011, vol. 46, p. 261. doi 10.1080/05704928.2011.565533CrossRefGoogle Scholar
  34. 34.
    Materazzi, S. and Vecchio, S., Appl. Spectrosc. Rev., 2010, vol. 45, p. 241. doi 10.1080/05704928.2010.483664CrossRefGoogle Scholar
  35. 35.
    Materazzi, S., Risoluti, R., and Napoli, A., Thermochim. Acta, 2015, vol. 606, p. 90. doi 10.1016/j.tca.2015.03.009CrossRefGoogle Scholar
  36. 36.
    Materazzi, S., Risoluti, R., Finamore, J., and Napoli, A., Microchem. J., 2014, vol. 115, p. 27. doi 10.1016/j.microc.2014.02.006CrossRefGoogle Scholar
  37. 37.
    Materazzi, S., Napoli, A., Finamore, J., Risoluti, R., and D’Arienzo, S., Int. J. Mass Spectrom., 2014, vols. 365–366, p. 372. doi 10.1016/j.ijms.2014.03.013Google Scholar
  38. 38.
    Materazzi, S., Foti, C., Crea, F., Risoluti, R., and Finamore, J., Thermochim. Acta, 2014, vol. 580, p. 7. doi 10.1016/j.tca.2014.01.025CrossRefGoogle Scholar
  39. 39.
    Vecchio, S., Materazzi, S., Wo, L.W., and De Angelis Curtis, S., Thermochim. Acta, 2013, vol. 568, p. 31. doi 10.1016/j.tca.2013.06.016CrossRefGoogle Scholar
  40. 40.
    Materazzi, S., Vecchio, S., Wo, L.W., and De Angelis Curtis, S., Thermochim. Acta, 2012, vol. 543, p. 183. doi 10.1016/j.tca.2012.05.013CrossRefGoogle Scholar
  41. 41.
    Materazzi, S., Vecchio, S., Wo, L.W., and De Angelis Curtis, S., J. Therm. Anal. Calorim., 2011, vol. 103, no. 1, p. 59. doi 10.1007/s10973-010-1137-6CrossRefGoogle Scholar
  42. 42.
    Bretti, C., Crea, F., De Stefano, C., Foti, C., Materazzi, S., and Vianelli, G., J. Chem. Eng. Data, 2013, vol. 58, p. 2835. doi 10.1021/je400568uCrossRefGoogle Scholar
  43. 43.
    Yue, S., Li, N., Bian, J., Hou, T., and Ma, J., Synth. Met., 2012, vol. 162, p. 247. doi 10.1016/j.synthmet.2011.11.030CrossRefGoogle Scholar
  44. 44.
    Risoluti, R., Piazzese, D., Napoli, A., and Materazzi, S., J. Anal. Appl. Pyrolysis, 2016, vol. 117, p. 82. doi 10.1016/j.jaap.2015.11.018CrossRefGoogle Scholar
  45. 45.
    Olczak-Kobza, M., J. Anal. Appl. Pyrolysis, 2007, vol. 78, p. 400. doi 10.1016/j.jaap.2006.10.003CrossRefGoogle Scholar
  46. 46.
    Kurkcuoglu, G.S., Kiraz, F.C., and Sayın, E., Spectrochim. Acta, Part A, 2015, vol. 149, p. 8. doi org/10.1016/j.saa.2015.04.019CrossRefGoogle Scholar
  47. 47.
    Risoluti, R., Gullifa, G., Fabiano, M.A., and Materazzi, S., Russ. J. Gen. Chem., 2015, vol. 85, p. 2374. doi 10.1134/S1070363215100242CrossRefGoogle Scholar
  48. 48.
    Papadopoulos, C., Cristovao, B., Ferenc, W., Hatzidimitriou, A., Vecchio Ciprioti, S., Risoluti, R., and Lalia-Kantouri, M., J. Therm. Anal. Calorim., 2016, vol. 123, p. 717. doi 10.1007/s10973-015-4976-3CrossRefGoogle Scholar
  49. 49.
    Risoluti, R., Materazzi, S., Sorrentino, F., Maffei, L., and Caprari, P., Talanta, 2016, vol. 159, p. 425. doi 10.1016/j.talanta.2016.06.037CrossRefGoogle Scholar
  50. 50.
    Materazzi, S., Risoluti, R., Pinci, S., and Saverio Romolo, F., Talanta, 2017, vol. 174, p. 673. doi 10.1016/j.talanta.2017.06.044CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. Risoluti
    • 1
  • G. Gullifa
    • 1
  • M. A. Fabiano
    • 1
  • R. Iona
    • 1
  • F. Zuccatosta
    • 1
  • L. W. Wo
    • 2
  • S. Materazzi
    • 1
  1. 1.Department of Chemistry“Sapienza” University of RomeRomeItaly
  2. 2.Department of ChemistryIllinois State UniversityNormalUSA

Personalised recommendations