Skip to main content
Log in

Divalent Transition Metal Complexes of 2-(Pyridin-2-yl)imidazole: Evolved Gas Analysis Predicting Model to Provide Characteristic Coordination

  • Letters to the Editor
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Previously published studies on imidazole derivative ligands suggested two main characteristic complex structures that are independent on the central metal ion. By the thermally induced decomposition behaviors, two different systematic decomposition trends were proposed. In this work, one of these characteristic decomposition mechanisms was again found for precipitated 2-(pyridin-2-yl)imidazole complexes. The final goal of these serial studies is to provide, by experimental evidences, a prediction model of thermal stability and typical decomposition behavior by comparing the structural characteristics of precipitated complexes. 2-(Pyridin-2-yl)imidazole complexes with transition metal ions of the general formula M(PyIm)2(H2O)2 (where M = Cu, Fe, Ni, Pd, Pt, Zn) were synthesized, characterized, and studied by thermoanalytical techniques coupled to mass spectrometry, to suggest their decomposition mechanism by evolved gas analysis (EGA-MS). As experimentally demonstrated in previous works, these complexes can be precipitated with two methanol molecules in the structure. By differential scanning calorimetry it was shown that methanol molecules can be replaced by water molecules under controlled conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Batten, S.R. and Robson, R., Angew. Chem., Int. Ed., 1998, vol. 37, p. 1460. doi 10.1002/(SICI)1521-3773

    Article  Google Scholar 

  2. Reinhoudt, D.N., Stoddart, J.F., and Ungaro, R., Chem. Eur. J., 1998, vol. 4, p. 1349. doi 10.1002/(SICI)1521-3765

    Article  Google Scholar 

  3. Di Gioia, M.L., Leggio, A., Liguori, A., Perri, F., Siciliano, C., and Viscomi, M.C., Amino Acids, 2010, vol. 38, no. 1, p. 133. doi 10.1007/s00726-008-0221-8

    Article  Google Scholar 

  4. Materazzi, S., Peluso, G., Ripani, L., and Risoluti, R., Microchem. J., 2017, vol. 134, p. 277. doi 10.1016/j.microc.2017.06.014

    Article  CAS  Google Scholar 

  5. Pierre, D.H., and Daniel, F., Chem. Soc. Rev., 1998, vol. 171, p. 351.

    Google Scholar 

  6. Janiak, C., J. Chem. Soc., Dalton Trans., 2003, p. 2781. doi 10.1039/B305705B

    Google Scholar 

  7. Kitagawa, S., Kitaura, R., and Noro, S.I., Angew. Chem., Int. Ed. 2004, vol. 43, p. 2334. doi 10.1002/anie.200300610

    Article  CAS  Google Scholar 

  8. Aiello, D., Materazzi, S., Risoluti, R., Thangavel, H., Di Donna, L., Mazzotti, F., Siciliano, C., and Napoli, A., Mol. BioSyst., 2015, vol. 11, p. 2373. doi 10.1039/c5mb00148j

    Article  CAS  Google Scholar 

  9. Batten, S.R. and Murray, K.S., Coord. Chem. Rev., 2003, vol. 246, p. 103. doi 10.1016/S0010-8545(03) 00119-X

    Article  CAS  Google Scholar 

  10. Chand, B.G., Ray, U.S., Mostafa, G., Cheng, G., Lu, T.H., and Sinha, C., Inorg. Chim. Acta, 2005, vol. 358, p. 1927. doi 10.1016/j.ica.2004.12.046

    Article  CAS  Google Scholar 

  11. Gao, C., Wu, Y.Z., Gong, H.B., Hao, X.P., Xu, X.G., and Jiang, M.H., Inorg. Chem. Commun., 2008, vol. 11, p. 985. doi 10.1016/j.inoche.2008.05.008

    Article  CAS  Google Scholar 

  12. Zhou, J.H., Peng, Y.F., Zhang, Y.P., Li, B.L., and Zhang, Y., Inorg. Chem. Commun., 2004, vol. 7, p. 1181. doi 10.1016/j.inoche.2004.09.001

    Article  CAS  Google Scholar 

  13. Chen, H.J. and Chen, X.M., Inorg. Chim. Acta, 2002, vol. 329, p. 13. doi 10.1016/S0020-1693(01)00791-5

    Article  CAS  Google Scholar 

  14. Materazzi, S., Gregori, A., Ripani, L., Apriceno, A., and Risoluti, R., Talanta, 2017, vol. 166, p. 328 doi 10.1016/j.talanta.2017.01.045

    Article  CAS  Google Scholar 

  15. Takahashi, P.M., Melo, L.P., Frem, R.C.G., Netto, A.V.G., Mauro, A.E., Santos, R.H.A., and Ferreira, J.G., J. Mol. Struct., 2006, vol. 783, p. 161. doi 10.1016/j.molstruc.2005.08.031

    Article  CAS  Google Scholar 

  16. Bose, D., Banerjee, J., Rahaman, S.H., Mostafa, G., Fun, H.K., Walsh, R.D.B., Zaworotko, M.J., and Ghosh, B.K., Polyhedron, 2004, vol. 23, p. 2045. doi 10.1016/j.poly.2004.04.035

    Article  CAS  Google Scholar 

  17. Risoluti, R., Materazzi, S., Gregori, A., and Ripani, L., Talanta, 2016, vol. 153, p. 407. doi 10.1016/j.talanta.2016.02.044

    Article  CAS  Google Scholar 

  18. Banerjee, S., Wu, B., Lassahn, P.G., Janiak, C., and Ghosh, A., Inorg. Chim. Acta, 2005, vol. 358, p. 535. doi 10.1016/j.ica.2004.07.048

    Article  CAS  Google Scholar 

  19. Perrino, C., Marconi, E., Tofful, E., Farao, C., Materazzi, S., and Canepari, S., Atmos. Environ., 2012, vol. 54, p. 36. doi 10.1016/j.atmosenv.2012.02.078

    Article  CAS  Google Scholar 

  20. Turiák, L., Vékey, K., Indelicato, S., Bongiorno, D., Indelicato, S., Drahos, L., Turco Liveri, V., and Ceraulo, L., J. Mass Spectrom., 2013, vol. 48, p. 379. doi 10.1002/jms.3161

    Article  Google Scholar 

  21. Wanga, X.L., Yang, P.P., Li, Z.W., Li, C.L., and Liao, D.Z., Inorg. Chim. Acta, 2009, vol. 362, p. 1901. doi 10.1016/j.ica.2008.09.001

    Article  Google Scholar 

  22. Romolo, F.S., Ferri, E., Mirasoli, M., D’Elia, M., Ripani, L., Peluso, G., Risoluti, R., Maiolini, E., and Girotti, S., Forensic Sci. Int., 2015, vol. 246, p. 25. doi 10.1016/j.forsciint.2014.10.037

    Article  CAS  Google Scholar 

  23. Jin, F., Zhou, H.P., Wang, X.C., Hu, Z.J., Wu, J.Y., Tian, Y.P., and Jiang, M.H., Polyhedron, 2007, vol. 26, p. 1338. doi 10.1016/j.poly.2006.11.038

    Article  CAS  Google Scholar 

  24. Jin, F., Zhou, H.P., Wang, X.C., Hu, Z.J., Wu, J.Y., Tian, Y.P., and Jiang, M.H., J. Mol. Struct., 2007, vol. 829, p. 202. doi 10.1016/j.molstruc.2006.06.025

    Article  CAS  Google Scholar 

  25. Małecki, J.G., Polyhedron, 2010, vol. 29, p. 2489. doi 10.1016/j.poly.2010.05.019

    Article  Google Scholar 

  26. Materazzi, S., De Angelis Curtis, S., Vecchio Ciprioti, S., Risoluti, R., and Finamore, J., J. Therm. Anal. Calorim., 2014, vol. 116, p. 93. doi 10.1007/s10973-013-3495-3

    Article  CAS  Google Scholar 

  27. Kurdziel, K., Glowiak, T., Materazzi, S., and Jezierska, J., Polyhedron, 2003, vol. 22, p. 3123. doi 10.1016/j.poly.2003.07.004

    Article  CAS  Google Scholar 

  28. Thakurta, S., Butcher, R.J., Garcia, C.J.G., Garribba, E., and Mitra, S., Inorg. Chim. Acta, 2010, vol. 363, p. 3981. doi 10.1016/j.ica.2010.07.069

    Article  CAS  Google Scholar 

  29. Carranza, J., Sletten, J., Lloret, F., and Julve, M., Polyhedron, 2009, vol. 28, p. 2249. doi 10.1016/j.poly.2009.04.001

    Article  CAS  Google Scholar 

  30. Risoluti, R., Fabiano, M.A., Gullifa, G., Vecchio Ciprioti, S., and Materazzi, S., Appl. Spectrosc. Rev., 2017, vol. 52, p. 39. doi 10.1080/05704928.2016.1207658

    Article  Google Scholar 

  31. Materazzi, S. and Risoluti, R., Appl. Spectrosc. Rev., 2014, vol. 49, no. 8, p. 635. doi 10.1080/05704928.2014.887021

    Article  CAS  Google Scholar 

  32. Materazzi, S. and Vecchio, S., Appl. Spectrosc. Rev., 2013, vol. 48, p. 654. doi 10.1080/05704928.2013.786722

    Article  Google Scholar 

  33. Materazzi, S. and Vecchio, S., Appl. Spectrosc. Rev., 2011, vol. 46, p. 261. doi 10.1080/05704928.2011.565533

    Article  Google Scholar 

  34. Materazzi, S. and Vecchio, S., Appl. Spectrosc. Rev., 2010, vol. 45, p. 241. doi 10.1080/05704928.2010.483664

    Article  Google Scholar 

  35. Materazzi, S., Risoluti, R., and Napoli, A., Thermochim. Acta, 2015, vol. 606, p. 90. doi 10.1016/j.tca.2015.03.009

    Article  CAS  Google Scholar 

  36. Materazzi, S., Risoluti, R., Finamore, J., and Napoli, A., Microchem. J., 2014, vol. 115, p. 27. doi 10.1016/j.microc.2014.02.006

    Article  CAS  Google Scholar 

  37. Materazzi, S., Napoli, A., Finamore, J., Risoluti, R., and D’Arienzo, S., Int. J. Mass Spectrom., 2014, vols. 365–366, p. 372. doi 10.1016/j.ijms.2014.03.013

    Google Scholar 

  38. Materazzi, S., Foti, C., Crea, F., Risoluti, R., and Finamore, J., Thermochim. Acta, 2014, vol. 580, p. 7. doi 10.1016/j.tca.2014.01.025

    Article  CAS  Google Scholar 

  39. Vecchio, S., Materazzi, S., Wo, L.W., and De Angelis Curtis, S., Thermochim. Acta, 2013, vol. 568, p. 31. doi 10.1016/j.tca.2013.06.016

    Article  CAS  Google Scholar 

  40. Materazzi, S., Vecchio, S., Wo, L.W., and De Angelis Curtis, S., Thermochim. Acta, 2012, vol. 543, p. 183. doi 10.1016/j.tca.2012.05.013

    Article  CAS  Google Scholar 

  41. Materazzi, S., Vecchio, S., Wo, L.W., and De Angelis Curtis, S., J. Therm. Anal. Calorim., 2011, vol. 103, no. 1, p. 59. doi 10.1007/s10973-010-1137-6

    Article  CAS  Google Scholar 

  42. Bretti, C., Crea, F., De Stefano, C., Foti, C., Materazzi, S., and Vianelli, G., J. Chem. Eng. Data, 2013, vol. 58, p. 2835. doi 10.1021/je400568u

    Article  CAS  Google Scholar 

  43. Yue, S., Li, N., Bian, J., Hou, T., and Ma, J., Synth. Met., 2012, vol. 162, p. 247. doi 10.1016/j.synthmet.2011.11.030

    Article  CAS  Google Scholar 

  44. Risoluti, R., Piazzese, D., Napoli, A., and Materazzi, S., J. Anal. Appl. Pyrolysis, 2016, vol. 117, p. 82. doi 10.1016/j.jaap.2015.11.018

    Article  CAS  Google Scholar 

  45. Olczak-Kobza, M., J. Anal. Appl. Pyrolysis, 2007, vol. 78, p. 400. doi 10.1016/j.jaap.2006.10.003

    Article  CAS  Google Scholar 

  46. Kurkcuoglu, G.S., Kiraz, F.C., and Sayın, E., Spectrochim. Acta, Part A, 2015, vol. 149, p. 8. doi org/10.1016/j.saa.2015.04.019

    Article  CAS  Google Scholar 

  47. Risoluti, R., Gullifa, G., Fabiano, M.A., and Materazzi, S., Russ. J. Gen. Chem., 2015, vol. 85, p. 2374. doi 10.1134/S1070363215100242

    Article  CAS  Google Scholar 

  48. Papadopoulos, C., Cristovao, B., Ferenc, W., Hatzidimitriou, A., Vecchio Ciprioti, S., Risoluti, R., and Lalia-Kantouri, M., J. Therm. Anal. Calorim., 2016, vol. 123, p. 717. doi 10.1007/s10973-015-4976-3

    Article  CAS  Google Scholar 

  49. Risoluti, R., Materazzi, S., Sorrentino, F., Maffei, L., and Caprari, P., Talanta, 2016, vol. 159, p. 425. doi 10.1016/j.talanta.2016.06.037

    Article  CAS  Google Scholar 

  50. Materazzi, S., Risoluti, R., Pinci, S., and Saverio Romolo, F., Talanta, 2017, vol. 174, p. 673. doi 10.1016/j.talanta.2017.06.044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Materazzi.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Risoluti, R., Gullifa, G., Fabiano, M.A. et al. Divalent Transition Metal Complexes of 2-(Pyridin-2-yl)imidazole: Evolved Gas Analysis Predicting Model to Provide Characteristic Coordination. Russ J Gen Chem 87, 2915–2921 (2017). https://doi.org/10.1134/S1070363217120313

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363217120313

Keywords

Navigation