Russian Journal of General Chemistry

, Volume 87, Issue 12, pp 2852–2857 | Cite as

Formation of Copper-Containing Particles on the Quartz Surface as a Result of the Photolysis of Copper(II) Complexes with Amino Acids



Island copper-containing films consisting mainly of copper(I) oxide particles were obtained on a quartz surface by photochemical decomposition of copper(II) complex compounds with amino acids. The size and morphology of Cu2O particles and their dependence on the photolysis duration and the amino acid nature contained in the complex were established. The films obtained by the complex [Cu(β-Ala)2] photolysis have the highest photocatalytic activity in reactions of methyl orange photodecomposition.


nanoparticles copper(I) oxide copper(II) complexes with amino acids photolysis photocatalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, W.C., Lyu, L.M., Yang, Y.C., and Huang, M.H., J. Am. Chem. Soc., 2012, vol. 134, no. 2, p. 1261. doi 10.1021/ja209662vCrossRefGoogle Scholar
  2. 2.
    Neskovska, R., Ristova, M., Velevska, J., and Ristov, M., Thin Solid Films, 2007, vol. 515, no. 11, p. 4717. doi 10.1016/j.tsf.2006.12.121CrossRefGoogle Scholar
  3. 3.
    Zhang, J.T., Liu J.F., Peng, Q., Wang, X., and Li, Y.D., Chem. Mater., 2006, vol. 18, no. 4, p. 867. doi 10.1021/cm052256fCrossRefGoogle Scholar
  4. 4.
    Papadimitriou, L. and Seafront, N.A., Solar Cells, 1981, vol. 3, no. 1, p. 73. doi 10.1016/0379-6787(81)90084-3CrossRefGoogle Scholar
  5. 5.
    Shelovanova, G.N., Patrusheva, T.N., Avilov, N.E., Baranov, O.Yu., and Khol'kin, A.I., Theor. Found. Chem. Eng., 2016, vol. 50, no. 5, p. 793. doi 10.1134/S0040579516050213.CrossRefGoogle Scholar
  6. 6.
    Tsai, Y.H., Chiu, C.Y., and Huang, M.H., J. Phys. Chem. (C), 2013, vol. 117, no. 46, p. 24611. doi 10.1021/jp4088018CrossRefGoogle Scholar
  7. 7.
    Bai, Y., Yang, T., Gu, Q., Cheng, G., and Zheng, R., Powder Technol., 2012, vol. 227, p. 35. doi 10.1016/j.powtec.2012.02.008CrossRefGoogle Scholar
  8. 8.
    Lin, Y.G., Hsu, Y.K., Lin, Y.C., Chang, Y.H., Chen, S.Y., and Chen, Y.C., J. Colloid Interface Sci., 2016, vol. 471, p. 76. doi 10.1016/j.jcis.2016.03.010CrossRefGoogle Scholar
  9. 9.
    Isaev, A.B., Zakargaeva, N.A., and Aliev, Z.M., Nanotechnol. in Russia, 2011, vol. 6, nos. 7–8, p. 463. doi 10.1134/S1995078011040069CrossRefGoogle Scholar
  10. 10.
    Lin, X. Zhou, R., Sheng, X., and Zhang, J., Nuclear Sci. Techniq., 2010, vol. 21, no. 3, p. 146. doi 10.13538/j.1001-8042/nst.21.14Google Scholar
  11. 11.
    Isaeva, E.I., Zheleznyak, A.A., Gorbunova, V.V., and Pronin, V.P., Russ. J. Gen. Chem., 2013, vol. 83, no. 6, p. 1183. doi 10.1134/S1070363213060376CrossRefGoogle Scholar
  12. 12.
    Novakovskii, M.S., Laboratornye raboty po khimii kompleksnykh soedinenii (Laboratory Works on the Chemistry of Complex Compounds), Kharkov: Kharkov University, 1972, p. 90.Google Scholar
  13. 13.
    Lin, C.J, Hsu, C.S., Wang, P.Y., Lin, Y.L., Lo, Y.S., and Wu, C.H., Inorg. Chem., 2014, vol. 53, p. 4934. doi 10.1021/ic4031238CrossRefGoogle Scholar
  14. 14.
    Yablokov, V.A., Smel’tsova, I.L., and Fraerman, V.I., Russ. J. Gen. Chem., 2014, vol. 84, no. 3, p. 568. doi 10.1134/S107036321403027XCrossRefGoogle Scholar
  15. 15.
    Das, S., Johnson, G.A., Nazhat, N.B., and Saadalla-Nazhat, R., J. Chem. Soc., Faraday Trans. 1, 1984, vol. 80, p. 2759. doi 10.1039/F19848002759CrossRefGoogle Scholar
  16. 16.
    Ho, J.Y. and Huang, M.H., J. Phys. Chem. (C), 2009, vol. 113, no. 32, p. 14159. doi 10.1021/jp903928pCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Herzen State Pedagogical University of RussiaSt. PetersburgRussia

Personalised recommendations