Russian Journal of General Chemistry

, Volume 87, Issue 12, pp 2832–2837 | Cite as

Synthesis, Self-Association, and Solubilizing Ability of an Amphiphilic Derivative of Poly(ethylene glycol) Methyl Ether

  • T. N. Pashirova
  • E. A. Burilova
  • S. S. Lukashenko
  • O. A. Lenina
  • V. V. Zobov
  • A. R. Khamatgalimov
  • V. I. Kovalenko
  • L. Ya. Zakharova
  • O. G. Sinyashin
Article
  • 3 Downloads

Abstract

A new amphiphilic derivative–methoxy(polyethoxy)ethyl stearate has been synthesized with the goal of creating therefrom systems for delivery and enhancement of bioavailability of piperine. The aggregation and solubilizing properties of ω-methylpoly(oxyethylene) stearate have been studied by means of a set of physicochemical methods.

Keywords

methoxy(polyethoxy)ethyl stearate surfactant self-association solubilization piperine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beig, A., Miller, J.M., Lindley, D., and Dahan, A., Mol. Pharm., 2016, vol. 14, no. 1, p. 319. doi 10.1021/acs.molpharmaceut.6b00967CrossRefGoogle Scholar
  2. 2.
    Laredj-Bourezg, F., Bolzinger, M.-A., Pelletier, J., Valour, J.-P., Rovire, M.R., Smatti, B., and Chevalier, Y., Int. J. Pharm., 2015, vol. 496, p. 1034. doi 10.1016/j.ijpharm.2015.11.031.CrossRefGoogle Scholar
  3. 3.
    Krasnov, V.P., Koroleva, M.A., and Vodovozova, E.L., Russ. Chem. Rev., 2013, vol. 82, no. 8, p. 783. doi 10.1070/RC2013v082n08ABEH004358CrossRefGoogle Scholar
  4. 4.
    Pasut, G. and Veronese, F.M., Drugs Today, 2009, vol. 45, no. 9, p. 687. doi 10.1358/dot.2009.45.9.1416421CrossRefGoogle Scholar
  5. 5.
    Turecek, P.L., Bossard, M.J., Schoetens, F., and Ivens, I.A., J. Pharm. Sci., 2016, vol. 105, no. 2, p. 460. doi 10.1016/j.xphs.2015.11.015CrossRefGoogle Scholar
  6. 6.
    Kolate, A., Baradia, D., Patil, S., Vhora, I., Kore, G., and Misra, A., J. Controlled Release, 2014, vol. 192, p. 67. doi 10.1016/j.jconrel.2014. 06.046CrossRefGoogle Scholar
  7. 7.
    Topchieva, I.N., Russ Chem. Rev., 1980, vol. 49, no. 3, p. 260. doi 10.1070/RC1980v049n03ABEH002458CrossRefGoogle Scholar
  8. 8.
    Reichert, C. and Borchard, G., J. Pharm. Sci., 2016, vol. 105, no. 2, p. 386. doi 10.1002/jps.24692CrossRefGoogle Scholar
  9. 9.
    Lin, J., Zhang, H., Morovati, V., and Dargazany, R., J. Colloid Interface Sci., 2017, vol. 504, p. 325. doi 10.1016/j.jcis.2017. 05.046CrossRefGoogle Scholar
  10. 10.
    Shin, D.H. and Kwon, G.S., Int. J. Pharm., 2017, vol. 518, nos. 1–2, p. 307. doi 10.1016/j.ijpharm.2017.01.006CrossRefGoogle Scholar
  11. 11.
    Cho, H., Gao, J., and Kwon, G.S., J. Controlled Release, 2016, vol. 240, p. 191. doi 10.1016/j.jconrel.2015.12.015CrossRefGoogle Scholar
  12. 12.
    Bulbake, U., Doppalapudi, S., Kommineni, N., and Khan, W., Pharmaceutics, 2017, vol. 9, no. 2, p. 12. doi 10.3390/pharmaceutics9020012CrossRefGoogle Scholar
  13. 13.
    Gabizon, A. and Papahadjopoulos, D., Proc. Natl. Acad. Sci. USA, 1988, vol. 85, p. 6949.CrossRefGoogle Scholar
  14. 14.
    Klibanov, A.L., Maruyama, K., Torchilin, V.P., and Huang, L., FEBS Lett., 1990, vol. 268, p. 235. doi 10.1016/0014-5793(90)81016-HCrossRefGoogle Scholar
  15. 15.
    Moghimi, S.M. and Hunter, A.C., Crit. Rev. Ther. Drug Carrier Syst., 2001, vol. 18, no. 6, p. 527. doi 10.1615/CritRevTherDrugCarrierSyst.v18.i6.30CrossRefGoogle Scholar
  16. 16.
    Freag, M.S., Elnaggar, Y.S., Abdelmonsif, D.A., and Abdallah, O.Y., Int. J. Nanomed., 2016, vol. 11, p. 4799. doi 10.2147/IJN. S111736CrossRefGoogle Scholar
  17. 17.
    Jain, S., Bhankur, N., Swarnakar, N.K., and Thanki, K., Pharm. Res., 2015, vol. 32, no. 10, p. 3282. doi 10.1007/s11095-015-1706-2CrossRefGoogle Scholar
  18. 18.
    Alavizadeh, S.H., Badiee, A., Golmohammadzadeh, S., and Jaafari, M.R., Int. J. Pharm., 2014, vol. 473, nos. 1–2, p. 326. doi 10.1016/j.ijpharm.2014.07.020CrossRefGoogle Scholar
  19. 19.
    Tavakoli, S., Tamaddon, A.M., Golkar, N., and Samani, S.M., J. Liposome Res., 2015, vol. 25, no. 1, p. 67. doi 10.3109/08982104.2014.928889CrossRefGoogle Scholar
  20. 20.
    Qhattal, H.S., Hye, T., Alali, A., and Liu, X., ACS Nano, 2014, vol. 8, no. 6, p. 5423. doi 10.1021/nn405839nCrossRefGoogle Scholar
  21. 21.
    Ramana, L.N., Sharma, S., Sethuraman, S., Ranga, U., and Krishnan, U.M., Int. J. Pharm., 2012, vol. 431, nos. 1–2, p. 120. doi 10.1016/j.ijpharm.2012.04.054CrossRefGoogle Scholar
  22. 22.
    Mayol, L., Serri, C., Menale, C., Crispi, S., Piccolo, M.T., Mita, L., Giarra, S., Forte, M., Saija, A., Biondi, M., and Mita, D.G., Eur. J. Pharm. Biopharm., 2015, vol. 93, p. 37. doi 10.1016/j.ejpb. 2015.03.005CrossRefGoogle Scholar
  23. 23.
    Zara, G.P., Cavalli, R., Bargoni, A., Fundart, A., Vighetto, D., and Gasco, M.R., J. Drug Target., 2002, vol. 10, no. 4, p. 327. doi 10.1080/10611860290031868CrossRefGoogle Scholar
  24. 24.
    Papi, M., Caputo, D., Palmieri, V., Coppola, R., Palchetti, S., Bugli, F., Martini, C., Digiacomo, L., Pozzi, D., and Caracciolo, G., Nanoscale, 2017, vol. 9, no. 29, p. 10 327. doi 10.1039/C7NR03042HCrossRefGoogle Scholar
  25. 25.
    Ozer, I., Tomak, A., Zareie, H.M., Baran, Y., and Bulmus, V., Biomacromolecules, 2017, vol. 18, no. 9, p. 2699. doi 10.1021/acs. biomac.7b00443CrossRefGoogle Scholar
  26. 26.
    Wibroe, P.P., Anselmo, A.C., Nilsson, P.H., Sarode, A., Gupta, V., Urbanics, R., Szebeni, J., Hunter, A.C., Mitragotri, S., Mollnes, T.E., and Moghimi, S.M., Nat. Nanotechnol., 2017, vol. 12, no. 6, p. 589. doi 10.1038/nnano.2017.47CrossRefGoogle Scholar
  27. 27.
    Gew, L.T. and Misran, M., J. Biol. Phys., 2017, vol. 43, p. 397. doi 10.1007/s10867-017-9459-2CrossRefGoogle Scholar
  28. 28.
    Dhivya, V., Priya, L.B., Chirayil, H.T., Sathiskumar, S., Huang, C.Y., and Padma, V.V., Biomed. Pharmacother., 2017, vol. 87, p. 705. doi 10.1016/j.biopha.2017.01.002CrossRefGoogle Scholar
  29. 29.
    Srinivasan, K., Crit. Rev. Food Sci. Nutr., 2007, vol. 47, no. 8, p. 735. doi 10.1080/10408390601062054CrossRefGoogle Scholar
  30. 30.
    Cherniakov, I., Izgelov, D., Domb, A.J., and Hoffman, A., Eur. J. Pharm. Sci., 2017, vol. 109, p. 21. doi 10.1016/j.ejps.2017. 07.003CrossRefGoogle Scholar
  31. 31.
    Hithamani, G. and Srinivasan, K., Food Biosci., 2017, vol. 19, p. 101. doi 10.1016/j.fbio.2017.06.008CrossRefGoogle Scholar
  32. 32.
    Bedada, S.K. and Boga, P.K., Eur. J. Clin. Pharmacol., 2017, vol. 73, no. 3, p. 343. doi 10.1007/s00228-016-2173-3CrossRefGoogle Scholar
  33. 33.
    Gorgani, L., Mohammadi, M., Najafpour, G.D., and Nikzad, M., Compr. Rev. Food Sci. Food Saf., 2017, vol. 16, no. 1, p. 124. doi 10.1111/1541-4337.12246CrossRefGoogle Scholar
  34. 34.
    Kalyanasundaran, K. and Thomas, J.K., J. Am. Chem. Soc., 1977, vol. 99, p. 2039. doi 10.1021/ja00449a004CrossRefGoogle Scholar
  35. 35.
    Regev, O. and Zana, R., J. Colloid Interface Sci., 1999, vol. 210, p. 8. doi 10.1006/jcis.1998.5776CrossRefGoogle Scholar
  36. 36.
    Frindi, M., Micbels, B., and Zana, R., J. Phys. Chem., 1992, vol. 96, p. 8137. doi 10.1021/j100199a058CrossRefGoogle Scholar
  37. 37.
    Turro, N.J. and Yekta, A., J. Am. Chem. Soc., 1978, vol. 100, p. 5951. doi 10.1021/ja00486a062CrossRefGoogle Scholar
  38. 38.
    McElhanon, J.R., Zifer, T., Kline, S.R., Wheeler, D.R., Loy, D.A., Jamison, G.M., Long, T.M., Rahimian, K., and Simmons, B.A., Langmuir, 2005, vol. 21, p. 3259. doi 10.1021/la047074zCrossRefGoogle Scholar
  39. 39.
    Choochana, P., Moungjaroen, J., Jongkon, N., Gritsanapan, W., and Tangyuenyongwatana, P., Pharm. Biol., 2014, p. 1. doi 10.3109/13880209.2014.924020Google Scholar
  40. 40.
    Rukovodstvo po eksperimental’nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv [A Guide to Experimental (Preclinical) Study of New Pharmacological Compounds], Khabriev, R.U., Ed., Moscow: Meditsina, 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. N. Pashirova
    • 1
    • 2
  • E. A. Burilova
    • 1
  • S. S. Lukashenko
    • 1
  • O. A. Lenina
    • 1
  • V. V. Zobov
    • 1
  • A. R. Khamatgalimov
    • 1
    • 2
  • V. I. Kovalenko
    • 1
    • 2
  • L. Ya. Zakharova
    • 1
    • 2
  • O. G. Sinyashin
    • 1
    • 2
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazan, TatarstanRussia
  2. 2.Kazan National Research Technological UniversityKazan, TatarstanRussia

Personalised recommendations