Advertisement

Russian Journal of General Chemistry

, Volume 87, Issue 12, pp 2826–2831 | Cite as

Aggregation Capacity and Complexation Properties of a System Based on an Imidazole-Containing Amphiphile and Bovine Serum Albumin

  • D. A. Samarkina
  • D. R. Gabdrakhmanov
  • S. S. Lukashenko
  • A. R. Khamatgalimov
  • L. Ya. Zakharova
Article

Abstract

A complex of physicochemical methods was used to study the aggregation characteristics of an imidazolium-containing amphiphile and its ability for complex formation with bovine serum albumin (BSA). Tensiometry showed that adding BSA to the surfactant decreases the aggregation threshold of the system by a factor of 50. Dynamic light scattering established, that the size of the surfactant–BSA complexes depends on the size of the polypeptide (6–10 nm) and is independent on the concentrations of the surfactant and BSA. The Stern‒Volmer constants and surfactant‒protein binding constants were calculated from fluorescence spectroscopy data.

Keywords

imidazolium-containing amphiphile aggregation surfactant–protein binary systems bovine serum albumin Stern‒Volmer constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bordes, R. and Holmberg, K., Adv. Colloid Interface Sci., 2015, vol. 222, p. 79. doi 10.1016/j.cis.2014.10.013CrossRefGoogle Scholar
  2. 2.
    Tehrani-Bagha, A.R., Holmberg, K., van Ginkel, C.G., and Kean, M., J. Colloid Interface Sci., 2015, vol. 449, p. 72. doi 10.1016/j.jcis.2014.09CrossRefGoogle Scholar
  3. 3.
    Nguyena, C.V., Nguyen, Th.V., and Phan, Ch.M., Colloids Surf. (A), 2015, vol. 482, p. 365. doi 10.1016/j.colsurfa.2015.06.012CrossRefGoogle Scholar
  4. 4.
    Bhadani, A., Misono, T., Singh, S., Sakai, K., Sakai, H., and Abe, M., J. Am. Chem. Soc., 2016, vol. 231, p. 36. doi 10.1016/j.cis. 2016.03.005Google Scholar
  5. 5.
    Gabdrakhmanov, D.R., Samarkina, D.A., Semenov, V.E., Krylova, E.S., Reznik, V.S., and Zakharova, L.Ya., J. Mol. Liq., 2016, vol. 218, p. 255. doi 10.1016/j.molliq.2016.02.069CrossRefGoogle Scholar
  6. 6.
    Gabdrakhmanov, D., Samarkina, D., Semenov, V., Syakaev, V., Giniyatullin, R., Gogoleva, N., Reznik, V., Latypov, Sh., Konovalov, A., Pokrovsky, A., Zuev, Yu., and Zakharova, L., Colloids Surf. (A), 2015, vol. 480, p. 113. doi 10.1016/j.colsurfa.2014.10.036CrossRefGoogle Scholar
  7. 7.
    Gabdrakhmanov, D.R., Samarkina, D.A., Valeeva, F.G., Saifina, L.F., Semenov, V.E., Reznik, V.S., Zakharova, L.Y., and Konovalov, A.I., Russ. Chem. Bull., 2015, vol. 64, p. 573. doi 10.1007/s11172-015-0902-xCrossRefGoogle Scholar
  8. 8.
    Vasilieva, E.A., Ibragimova, A.R., Lukashenko, S.S., Konovalov, A.I., and Zakharova, L.Ya., Fluid Phase Equilib., 2014, vol. 376, p. 172. doi 10.1016/j.fluid.2014.06.007CrossRefGoogle Scholar
  9. 9.
    Miao, Y.H. and Helseth, L.E., Colloids Surf. (B), 2008, vol. 66, no. 2, p. 299. doi 10.1016/j.colsurfb.2008.07.002CrossRefGoogle Scholar
  10. 10.
    Le, T.T., Sabatino, P., Heyman, B., Kasinos, M., Dinh, H.H., Dewettinck, K., Martins, J., and Meeren, P.V., Food Hydrocoll., 2011, vol. 25, no. 4, p. 594. doi 10.1016/j.foodhyd.2010.07.012.CrossRefGoogle Scholar
  11. 11.
    Lee, H.J., McAuley, A., Schilke, K.F., and McGuire, J., Adv. Drug Delivery Rev., 2011, vol. 63, p. 1160. doi 10.1016/j.addr.2011.06.015CrossRefGoogle Scholar
  12. 12.
    Kwaambwa, H.M. and Rennie, A.R., Biopolymers, 2012, vol. 97, no. 4, p. 209. doi 10.1002/bip.22014CrossRefGoogle Scholar
  13. 13.
    Vasilescu, M. and Angelescu, D., Langmuir, 1999, vol. 15, no. 8, p. 2635. doi 10.1021/la981424yCrossRefGoogle Scholar
  14. 14.
    Brauner, J.W., Flach, C.R., and Mendelsohn, R., J. Am. Chem. Soc., 2005, vol. 127, p. 100. doi 10.1021/ja0400685CrossRefGoogle Scholar
  15. 15.
    Ghosh, S., Colloids Surf. (B), 2005, vol. 41, no. 3, p. 209. doi 10.1016/j.colsurfb.2004.12.004CrossRefGoogle Scholar
  16. 16.
    Chiti, F. and Dobson, C.M., Annu. Rev. Biochem., 2006, vol. 75, p. 333. doi 10.1146/annurev.biochem. 75.101304.123901CrossRefGoogle Scholar
  17. 17.
    Dobson, C.M., Protein Pept. Lett., 2006, vol. 13, p. 219. doi 10.2174/092986606775338362CrossRefGoogle Scholar
  18. 18.
    Mehta, S.K., Bhawna, Bhasin, K.K., and Kumar, A., J. Colloid Interface Sci., 2008, vol. 323, no. 2, p. 426. doi 10.1016/j.jcis.2008.04.026CrossRefGoogle Scholar
  19. 19.
    Zhou, T., Ao, M., Xu, G., Liu, T., and Zhang, J., J. Colloid Interface Sci., 2013, vol. 389, p. 175. doi 10.1016/j.jcis.2012.08.067CrossRefGoogle Scholar
  20. 20.
    Sharma, A., Pasha, J.M., and Deep, Sh., J. Colloid Interface Sci., 2010, vol. 350, p. 240. doi 10.1016/j.jcis.2010.06.054CrossRefGoogle Scholar
  21. 21.
    Misra, P.K., Dash, U., and Maharan, S., Colloids Surf. (A), 2015, vol. 483, p. 36. doi 10.1016/j.colsurfa.2015.06.052CrossRefGoogle Scholar
  22. 22.
    Bharmoria, P., Rao, K.S., Trivedi, T.J., and Kumar, A., J. Phys. Chem. B, 2014, vol. 118, p. 115. doi 10.1021/jp4102042CrossRefGoogle Scholar
  23. 23.
    Vaidya, Sh.V. and Narváez, Al.R., Colloids Surf. (B), 2014, vol. 113, p. 285. doi 10.1016/j.colsurfb.2013.09.025CrossRefGoogle Scholar
  24. 24.
    Deep, S. and Ahluwalia, J.C., Phys. Chem. Chem. Phys., 2001, vol. 3, p. 4583. doi 10.1039/b105779kCrossRefGoogle Scholar
  25. 25.
    Yina, T., Qina, M., and Shena, W., Colloids Surf. (A), 2014, vol. 461, p. 22. doi 10.1016/j.colsurfa.2014.07.012CrossRefGoogle Scholar
  26. 26.
    Pal, A. and Yadav, S., Fluid Phase Equilib., 2016, vol. 412, p. 71. doi 10.1016/j.fluid.2015.12.034CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. A. Samarkina
    • 1
  • D. R. Gabdrakhmanov
    • 1
  • S. S. Lukashenko
    • 1
  • A. R. Khamatgalimov
    • 1
  • L. Ya. Zakharova
    • 1
  1. 1.A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Research CenterRussian Academy of SciencesKazan, TatarstanRussia

Personalised recommendations