Advertisement

Russian Journal of General Chemistry

, Volume 87, Issue 12, pp 2816–2825 | Cite as

Synthesis and Antitubercular, Antimicrobial, and Hemolytic Activity of Methyl D-Glucopyranuronate and Its Simplest Derivatives

  • M. G. Belenok
  • O. V. Andreeva
  • B. F. Garifullin
  • A. S. Strobykina
  • M. A. Kravchenko
  • A. D. Voloshina
  • V. E. Kataev
Article

Abstract

Methyl glucuronate and some of its simplest derivatives have been synthesized, and their antitubercular, antimicrobial, and hemolytic activities have been studied. The simplest derivatives of glucuronic acid have been shown for the first time to exhibit a high antitubercular activity which is comparable with the activity of isoniazid.

Keywords

glyucuronic acid methyl D-glucopyranuronate glucuronides glucopyranosides antitubercular activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ünak, T., Curr. Pharm. Des., 2000, vol. 6, no. 11, p. 1127. doi 10.2174/1381612003399798CrossRefGoogle Scholar
  2. 2.
    Stachulski, A.V. and Meng, X., Nat. Prod. Rep., 2013, vol. 30, no. 6, p. 806. doi 10.1039/c3np70003hCrossRefGoogle Scholar
  3. 3.
    Kawabata, K., Mukai, R., and Ishisaka, A., Food Funct., 2015, vol. 6, no. 5, p. 1399. doi 10.1039/C4FO01178CCrossRefGoogle Scholar
  4. 4.
    D’Andrea, G., Fitoterapia, 2015, vol. 106, p. 256. doi 10.1016/j.fitote.2015.09.018CrossRefGoogle Scholar
  5. 5.
    Paiva-Martins, F., Silva, A., Almeida, V., Carvalheira, M., Serra, C., Rodrígues-Borges, J.E., Fernandes, J., Belo, L., and Santos-Silva, A., J. Agric. Food Chem., 2013, vol. 61, no. 27, p. 6636. doi 10.1021/jf4016202CrossRefGoogle Scholar
  6. 6.
    Goh, D., Lee, Y.H., and Ong, E.S., J. Agric. Food Chem., 2005, vol. 53, no. 21, p. 8197. doi 10.1021/jf051506+CrossRefGoogle Scholar
  7. 7.
    Li, H., Huang, D., Gao, Z., Lv, Y., Zhang, L., Cui, H., and Zheng, J., Oncol. Rep., 2010, vol. 24, no. 5, p. 1153. doi 10.3892/or_00000967Google Scholar
  8. 8.
    Pan, Z.W., Feng, T.M., Shan, L.C., Cai, B.Z., Chu, W.F., Niu, H.L., Lu, Y.J., and Yang, B.F., Phytother. Res., 2008, vol. 22, no. 11, p. 1428. doi 10.1002/ptr.2364CrossRefGoogle Scholar
  9. 9.
    Haggag, E.G., Kamal, A.M., Abdelhady, M.I.S., El-Sayed, M.M., El-Wakil, E.A., and Abd-El-hamed, S.S., Pharm. Biol., 2011, vol. 49, no. 11, p. 1103. doi 10.3109/13880209.2011.568623CrossRefGoogle Scholar
  10. 10.
    Ryu, B., Kim, H.M., Lee, J.S., Lee, C.K., Sezirahiga, J., Woo, J.-H., Choi, J.-H., and Jang, D.S., J. Agric. Food Chem., 2016, vol. 64, no. 15, p. 3048. doi 10.1021/acs.jafc.6b00337CrossRefGoogle Scholar
  11. 11.
    Cuong, T.D., Hung, T.M., Lee, J.-S., Weon, K.-Y., Woo, M.H., and Min, B.S., Bioorg. Med. Chem. Lett., 2015, vol. 25, no. 5, p. 1129. doi 10.1016/j.bmcl.2014.12.055CrossRefGoogle Scholar
  12. 12.
    Sato, H., Goto, W., Yamamura, J., Kurokawa, M., Kageyama, S., Takahara, T., Watanabe, A., and Shiraki, K., Antiviral Res., 1996, vol. 30, nos. 2–3, p. 171. doi 10.1016/0166-3542(96)00942-4CrossRefGoogle Scholar
  13. 13.
    Baltina, L.A., Kondratenko, R.M., Mustafina, S.R., Flekhter, O.B., Murinov, Yu.I., Davydova, V.A., Zarudii, F.S., Ismagilova, A.F., and Tolstikov, G.A., Pharm. Chem. J., 2001, vol. 35, no. 1, p. 40. doi 10.1023/A:1010454810888CrossRefGoogle Scholar
  14. 14.
    Kondratenko, R.M., Baltina, L.A., Mustafina, S.R., Makarova, N.V., Nasyrov, Kh.M., and Tolstikov, G.A., Pharm. Chem. J., 2001, vol. 35, no. 2, p. 101. doi 10.1023/A:1010481123359CrossRefGoogle Scholar
  15. 15.
    Kim, K.H., Lee, I.K., Choi, S.U., Lee, J.H., Moon, E., Kim, S.Y., and Lee, K.R., Planta Med., 2011, vol. 77, no. 13, p. 1555. doi 10.1055/s-0030-1270781CrossRefGoogle Scholar
  16. 16.
    Li, S., Zhao, J., Liu, Y., Chen, Z., Xu, Q., Khan, I.A., and Yang, S., J. Agric. Food Chem., 2014, vol. 62, no. 2, p. 488. doi 10.1021/jf4046667CrossRefGoogle Scholar
  17. 17.
    Shan, Y., Li, H., Guan, F., Chen, Y., Yin, M., Wang, M., Feng, X., and Wang, Q., Molecules, 2015, vol. 20, no. 11, p. 20334. doi 10.3390/molecules201119695CrossRefGoogle Scholar
  18. 18.
    Miao, H., Suna, Y., Yuan, Y., Zhao, H., Wu, J., Zhang, W., and Zhou, L., Chem. Biodiversity, 2016, vol. 13, no. 4, p. 437. doi 10.1002/cbdv.201500130CrossRefGoogle Scholar
  19. 19.
    Andreeva, O.V., Sharipova, R.R., Strobykina, I.Yu., Kravchenko, M.A., Strobykina, A.S., Voloshina, A.D., Musin, R.Z., and Kataev, V.E., Russ. J. Org. Chem., 2015, vol. 51, no. 9, p. 1324. doi 10.1134/S1070428015090201CrossRefGoogle Scholar
  20. 20.
    Garifullin, B.F., Strobykina, I.Yu., Sharipova, R.R., Kravchenko, M.A., Andreeva, O.V., Bazanova, O.B., and Kataev, V.E., Carbohydr. Res., 2016, vol. 431, p. 15. doi 10.1016/j.carres.2016. 05.007CrossRefGoogle Scholar
  21. 21.
    Izmest’ev, E.S., Andreeva, O.V., Sharipova, R.R., Kravchenko, M.A., Garifullin, B.F., Strobykina, I.Yu., Kataev, V.E., and Mironov, V.F., Russ. J. Org. Chem., 2017, vol. 53, no. 1, p. 51. doi 10.1134/S1070428017010092CrossRefGoogle Scholar
  22. 22.
    Batrakov, S.G., Nikitin, D.I., and Pitryuk, I.A., Biochim. Biophys. Acta, 1996, vol. 1302, no. 2, p. 167. doi 10.1016/0005-2760(96)00060-4CrossRefGoogle Scholar
  23. 23.
    Toukach, F.V., Perepelov, A.V., Bartodziejska, B., Shashkov, A.S., Blaszczyk, A., Arbatsky, N.P., Rozalski, A., and Knirel, Y.A., Carbohydr. Res., 2003, vol. 338, p. 1431. doi 10.1016/S0008-6215(03)00096-XCrossRefGoogle Scholar
  24. 24.
    Sidorczyk, Z., Kondakova, A.N., Zych, K., Senchenkova, S.N., Shashkov, A.S., Drzewiecka, D., and Knirel, Y.A., Eur. J. Biochem., 2003, vol. 270, no. 15, p. 3182. doi 10.1046/j.1432-1033.2003.03698.xCrossRefGoogle Scholar
  25. 25.
    Katzenellenbogen, E., Kocharova, N.A., Shashkov, A.S., Gorska-Fraczek, S., Bogulska, M., Gamian, A., and Knirel, Y.A., Carbohydr. Res., 2013, vol. 368, p. 84. doi 10.1016/j.carres.2012.12.016CrossRefGoogle Scholar
  26. 26.
    Wadouachi, A. and Kovensky, J., Molecules, 2011, vol. 16, no. 5, p. 3933. doi 10.3390/molecules16053933CrossRefGoogle Scholar
  27. 27.
    Baba, T., Kidera, Y., Kimura, N.T., Aoki, K., Kamura, T., Taniguchu, S., and Nishikawa, K., Jpn. J. Cancer Res., 1978, vol. 69, no. 2, p. 283. doi 10.20772/cancersci1959.69.2_283Google Scholar
  28. 28.
    Florent, J.-C., Dong, X., Gaudel, G., Mitaku, S., Monneret, C., Gesson, J.-P., Jacquesy, J.-C., Mondon, M., Renoux, B., Andrianomenjanahary, S., Michel, S., Koch, M., Tillequin, F., Gerken, M., Czech, J., Straub, R., and Bosslet, K., J. Med. Chem., 1998, vol. 41, no. 19, p. 3572. doi 10.1021/jm970589lCrossRefGoogle Scholar
  29. 29.
    De Graaf, M., Nevalainen, T.J., Scheeren, H.W., Pinedo, H.M., Haisma, H.J., and Boven, E., Biochem. Pharmacol., 2004, vol. 68, no. 11, p. 2273. doi 10.1016/j.bcp.2004.08.004CrossRefGoogle Scholar
  30. 30.
    Tietze, L.F., Schuster, H.J., Schmuck, K., Schuberth, I., and Alves, F., Bioorg. Med. Chem., 2008, vol. 16, no. 12, p. 6312. doi 10.1016/j.bmc.2008.05.009CrossRefGoogle Scholar
  31. 31.
    Thomas, M., Clarhaut, J., Tranoy-Opalinski, I., Gesson, J.-P., Roche, J., and Papot, S., Bioorg. Med. Chem., 2008, vol. 16, no. 17, p. 8109. doi 10.1016/j.bmc.2008.07.048CrossRefGoogle Scholar
  32. 32.
    Kolakowski, R.V., Haelsig, K.T., Emmerton, K.K., Leiske, C.I., Miyamoto, J.B., Cochran, J.H., Lyon, R.P., Senter, P.D., and Jeffrey, S.C., Angew. Chem., Int. Ed., 2016, vol. 55, no. 28, p. 7948. doi 10.1002/anie.201601506CrossRefGoogle Scholar
  33. 33.
    Grinda, M., Clarhaut, J., Tranoy-Opalinski, I., Renoux, B., Monvoisin, A., Cronier, L., and Papot, S., Chem. Med. Chem., 2011, vol. 6, no. 12, p. 2137. doi 10.1002/cmdc.201100355CrossRefGoogle Scholar
  34. 34.
    Ranganathan, A., Gee, S.J., and Hammock, B.D., Anal. Bioanal. Chem., 2015, vol. 407, no. 24, p. 7263. doi 10.1007/s00216-015-8918-5CrossRefGoogle Scholar
  35. 35.
    Albin, N., Massaad, L., Toussaint, C., Mathieu, M.-C., Morizet, J., Parise, O., Gouyette, A., and Chabot, G.G., Cancer Res., 1993, vol. 53, no. 15, p. 3541.Google Scholar
  36. 36.
    Wang, Y., Yuan, H., Wright, S.C., Wang, H., and Larrick, J.W., Bioorg. Med. Chem., 2003, vol. 11, no. 7, p. 1569. doi 10.1016/S0968-0896(02)00603-XCrossRefGoogle Scholar
  37. 37.
    Liu, Y.-H., Liang, W.-L., Lee, C.-C., Tsai, Y.-F., and Hou, W.-C., Food Chem., 2011, vol. 129, no. 2, p. 423. doi 10.1016/j.foodchem.2011.04.094CrossRefGoogle Scholar
  38. 38.
    Cheng, T.C., Roffler, S.R., Tzou, S.C., Chuang, K.H., Su, Y.C., Chuang, C.H., Kao, C.H., Chen, C.S., Harn, I.H., Liu, K.Y., Cheng, T.L., and Leu, Y.L., J. Am. Chem. Soc., 2012, vol. 134, no. 6, p. 3103. doi 10.1021/ja209335zCrossRefGoogle Scholar
  39. 39.
    Duranová, M., Hirsch, J., Kolenová, K., and Biely, P., Biosci. Biotechnol. Biochem., 2009, vol. 73, no. 11, p. 2483. doi 10.1271/bbb.90486CrossRefGoogle Scholar
  40. 40.
    Williams, J.M., Carbohydr. Res., 1983, vol. 117, p. 89. doi 10.1016/0008-6215(83)88077-XCrossRefGoogle Scholar
  41. 41.
    Khodair, A.I. and Bertrand, P., Tetrahedron, 1998, vol. 54, no. 19, p. 4859. doi 10.1016/S0040-4020(98)00170-7CrossRefGoogle Scholar
  42. 42.
    Johgkees, S.A.K. and Withers, S.G., J. Am. Chem. Soc., 2011, vol. 133, no. 48, p. 19334. doi 10.1021/ja209067vCrossRefGoogle Scholar
  43. 43.
    Pilgrim, W. and Murphy, P.V., J. Org. Chem., 2010, vol. 75, no. 20, p. 6747. doi 10.1021/jo101090fCrossRefGoogle Scholar
  44. 44.
    Mönch, B., Gebert, A., Emmerling, F., Becker, R., and Nehls, I., Carbohydr. Res., 2012, vol. 352, p. 186. doi 10.1016/j.carres. 2012.01.002CrossRefGoogle Scholar
  45. 45.
    Donald, P.R., Tuberculosis, 2010, vol. 90, no. 5, p. 279. doi 10.1016/j.tube.2010.07.002CrossRefGoogle Scholar
  46. 46.
    Bollenback, G.N., Long, J.W., Benjamin, D.G., and Lindquist, J.A., J. Am. Chem. Soc., 1955, vol. 77, no. 12, p. 3310. doi 10.1021/ja01617a047CrossRefGoogle Scholar
  47. 47.
    Methods for Dilution Antimicrobial Susceptibility. Tests for Bacteria that Grow Aerobically: Approved Standard. M7-A5, Wayne, PA, USA: National Committee for Clinical Laboratory Standards, 2000.Google Scholar
  48. 48.
    Voloshina, A.D., Semenov, V.E., Strobykina, A.S., Kulik, N.V., Krylova, E.S., Zobov, V.V., and Reznik, V.S., Russ. J. Bioorg. Chem., 2017, vol. 43, no. 2, p. 170. doi 10.1134/S1068162017020170CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. G. Belenok
    • 1
  • O. V. Andreeva
    • 1
  • B. F. Garifullin
    • 1
  • A. S. Strobykina
    • 1
  • M. A. Kravchenko
    • 2
  • A. D. Voloshina
    • 1
  • V. E. Kataev
    • 1
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazan, TatarstanRussia
  2. 2.Ural Research Institute of PhthisiopulmonologyMinistry of Health Protection of the Russian FederationYekaterinburgRussia

Personalised recommendations