Advertisement

Russian Journal of General Chemistry

, Volume 87, Issue 12, pp 2801–2809 | Cite as

5-(α-Halobenzyl)- and 5-Benzylidene-2,2-dimethyl-1,3-oxazolidin-4-ones in Synthesis of α-Hydroxy Acids

  • V. A. Mamedov
  • V. L. Mamedova
  • G. Z. Khikmatova
  • D. E. Korshin
  • O. G. Sinyashin
Article
  • 26 Downloads

Abstract

The reactions of acid hydrolysis of 5-(α-halobenzyl)- and 5-benzylidene-2,2-dimethyl-1,3-oxazolidin-4-ones were studied. A possibility of the synthesis of corresponding α-hydroxy acids was shown.

Keywords

5-(halobenzyl)-2,2-dimethyl-1,3-oxazolidin-4-ones 5-benzylidene-2,2-dimethyl-1,3-oxazolidin-4-ones 3-halo-2-hydroxy-3-arylpropionic acids 2-hydroxy-3-arylacrylic acids stereoselectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coppola, G.M. and Schuster, H.F., α-Hydroxy Acids in Enantioselective Synthesis. Weinheim: VCH, 1997. doi 10.1002/352760085XCrossRefGoogle Scholar
  2. 2.
    Janey, J.M., Angew. Chem. Int. Ed., 2005, vol. 44, p. 4292. doi 10.1002/anie.200462314CrossRefGoogle Scholar
  3. 3.
    Momiyama, N. and Yamamoto, H., J. Am. Chem. Soc., 2003, vol. 125, p. 6038. doi 10.1021/ja0298702CrossRefGoogle Scholar
  4. 4.
    Nelson, T.D., LeBlond, C.R., and Frantz, D.E., J. Org. Chem., 2004, vol. 11, p. 3620. doi 10.1021/jo035794pCrossRefGoogle Scholar
  5. 5.
    Luyten, M.A., Bur, D., Wynn, H., Parris, W., Gold, M., Friesen, J.D., and Jones, J.B., J. Am. Chem. Soc., 1989, vol. 111, p. 6800. doi 10.1021/ja00199a046CrossRefGoogle Scholar
  6. 6.
    Seto, M., Roizen, J.L., and Stoltz, B.M., Angew. Chem. Int. Ed., 2008, vol. 47, p. 6873. doi 10.1002/anie.200801424CrossRefGoogle Scholar
  7. 7.
    Trost, B.M., Dogra, K., and Franzini, M., J. Am. Chem. Soc., 2004, vol. 126, p. 1944. doi 10.1021/ja031539aCrossRefGoogle Scholar
  8. 8.
    Shao, P.-L., Chen, X.-Y., and Ye, S., Angew. Chem. Int. Ed., 2010, vol. 49, p. 8412. doi 10.1002/anie.201003532CrossRefGoogle Scholar
  9. 9.
    Numajiri, Y., Jimenes-Oses, G., Wang, B., Houk, K.N., and Stoltz, B.M., Org. Lett., 2015, vol. 17, p. 1082. doi 10.1021/ol503425tCrossRefGoogle Scholar
  10. 10.
    Dochnahl, M. and Fu, G.C., Angew. Chem. Int. Ed., 2009, vol. 48, p. 2391. doi 10.1002/anie.200805805CrossRefGoogle Scholar
  11. 11.
    Cardillo, G., Hashem, Md.A., and Tomasini, C., J. Chem. Soc. Perkin Trans. 1, 1990, p. 1487. doi 10.1039/P19900001487Google Scholar
  12. 12.
    Macherla, V.R., Liu, J., Sunga, M., White, D.J., Grodberg, J., Teisan, S., Lam, K.S., and Potts, B.C.M., J. Nat. Prod., 2007, vol. 70, p. 1454. doi 10.1021/np0702032CrossRefGoogle Scholar
  13. 13.
    Fischer, H.O.L., Dangschat, G., and Stettiner, H., Chem. Ber., 1932, vol. 65, p. 1032. doi 10.1002/cber.19320650622CrossRefGoogle Scholar
  14. 14.
    Polonski, T., Tetrahedron, 1983, vol. 39, p. 3139. doi 10.1016/S0040-4020(01)91556-XCrossRefGoogle Scholar
  15. 15.
    Shipov, A.G., Orlova, N.A., Novikova, O.P., and Baukov, Yu.I., Zh. Obshch. Khim., 1985, vol. 55, p. 943.Google Scholar
  16. 16.
    Roush, W.R., Essenfeld, A.P., Warmus, J.S., and Brown, B.B., Tetrahedron Lett., 1989, vol. 30, no. 52, p. 7305. doi 10.1016/S0040-4039(00)70683-6CrossRefGoogle Scholar
  17. 17.
    Heathcock, C.H., Pirrung, M.C., Young, S.D., Hagen, J.P., Jarvi, E.T., Badertscher, U., Marki, H.-P., and Montgomery, S.H., J. Am. Chem. Soc., 1984, vol. 106, p. 8161. doi 10.1021/ja00338a026CrossRefGoogle Scholar
  18. 18.
    Hof, R.P. and Kellogg, R.M., J. Org. Chem., 1996, vol. 61, p. 3423. doi 10.1021/jo952021vCrossRefGoogle Scholar
  19. 19.
    Ketcha, D.M., Abou-Gharbia, M., Smith, F.X., and Swern, D., Tetrahedron Lett., 1983, vol. 24, no. 28, p. 2811. doi 10.1016/S0040-4039(00)88030-2CrossRefGoogle Scholar
  20. 20.
    Abou-Gharbia, M., Ketcha, D.M., Zacharias, D.E., and Swern, D., J. Org. Chem., 1985, vol. 50, p. 2224. doi 10.1021/jo00213a005CrossRefGoogle Scholar
  21. 21.
    Mamedov, V.A., Mamedova, V.L., Khikmatova, G.Z., Krivolapov, D.V., and Litvinov, I.A., Russ. Chem. Bull., 2016, vol. 65, no. 5, p. 1260. doi 10.1007/s11172-016-1445-5CrossRefGoogle Scholar
  22. 22.
    De la Mare, P.B.D. and Wilson, M.A., J. Chem. Soc. Perkin Trans. 2, 1973, p. 653. doi 10.1039/P29730000653Google Scholar
  23. 23.
    Sharadamani, P.R., Jagannadham, V., and Rao, V.V., Ind. J. Chem. (A), 1991, vol. 30, p. 514.Google Scholar
  24. 24.
    Defoin, A., Augelmann, G., Fritz, H., Geffroy, G., Schmidlin, Ch., and Streith, J., Helv. Chim. Acta, 1985, vol. 68, p. 1998. doi 10.1002/hlca.19850680724CrossRefGoogle Scholar
  25. 25.
    Tung, C.C., Speziale, A.J., and Frazier, H.W., J. Org Chem., 1963, vol. 28, no. 6, p. 1514. doi 10.1021/jo01041a018CrossRefGoogle Scholar
  26. 26.
    Mamedov, V.A., Mamedova, V.L., Kadyrova, S.F., Khikmatova, G.Z., Gubaidullin, A.T., Rizvanov, I.Kh., and Latypov, Sh.K., Tetrahedron, 2015, vol. 71, p. 2670. doi 10.1016/j.tet.2015.03.038CrossRefGoogle Scholar
  27. 27.
    Mamedov, V.A., Mamedova, V.L., Khikmatova, G.Z., Mironova, E.V., Krivolapov, D.B., Bazanova, O.B., Rizvanov, I.Kh., and Latypov, Sh.K., RSC Adv., 2016, vol. 6, p. 27885. doi 10.1039/C6RA02586BCrossRefGoogle Scholar
  28. 28.
    Yamaguchi, T., Harada, N., Ozaki, K., Hayashi, M., Arakawa, H., and Hashiyama, T., Tetrahedron, 1999, vol. 55, p. 1005. doi 10.1016/S0040-4020(98)01108-9CrossRefGoogle Scholar
  29. 29.
    Balducci, D., Conway, P.A., Sapuppo, G., Muller-Bunz, H., and Paradisi, F., Tetrahedron, 2012, vol. 68, p. 7374. doi 10.1016/j.tet. 2012.06.078CrossRefGoogle Scholar
  30. 30.
    Pirrung, M.C., Chen, J., Rowley, E.G., and McPhail, A.T., J. Am. Chem. Soc., 1993, vol. 115, p. 7103. doi 10.1021/ja00069a006CrossRefGoogle Scholar
  31. 31.
    Shi, L., Wang, L., Wang, Z., Zhu, H.-L., and Song, Q., Eur. J. Med. Chem., 2012, vol. 47, p. 585. doi 10.1016/j.ejmech.2011.10.027CrossRefGoogle Scholar
  32. 32.
    Berzelius, J.J., Ann. Phys., 1835, vol. 36, p. 1.CrossRefGoogle Scholar
  33. 33.
    Wong, H.N.C., Xu, Z.L., Chang, H.M., and Lee, Ch.M., Synthesis, 1992, vol. 8, p. 793. doi 10.1055/s-1992-26228CrossRefGoogle Scholar
  34. 34.
    Dalla, V., Cotelle, Ph., and Catteau, J.P., Tetrahedron Lett., 1997, vol. 38, no. 9, p. 1577. doi 10.1016/S0040-4039(97)00154-8CrossRefGoogle Scholar
  35. 35.
    Ferro, S., Rao, A., Zappala, M., Chimirri, A., Barreca, M.L., Witvrouw, M., Debyser, Z., and Monforte, P., Heterocycles, 2004, vol. 63, no. 12, p. 2727. doi 10.3987/COM-04-10193CrossRefGoogle Scholar
  36. 36.
    Weber, V., Rubat, C., Duroux, E., Lartigue, C., Madesclaire, M., and Coudert, P., Bioorg. Med. Chem., 2005, vol. 13, p. 4552. doi 10.1016/j.bmc.2005.04.055CrossRefGoogle Scholar
  37. 37.
    Avendano, C., De la Cuesta, E., Huck, L., Ortin, I., and Gonzales, J.F., Arkivoc, 2010, vol. iii, p. 200.Google Scholar
  38. 38.
    Takrouri, Kh., Chen, T., Papadjpoulos, E., Sahoo, R., Kabha, E., Chen, H., Cantel, S., Wagner, G., Halperin, J.A., Aktas, B.H., and Chorev, M., Eur. J. Med. Chem., 2014, vol. 77, p. 361. doi 10.1016/j.ejmech.2014.03.034CrossRefGoogle Scholar
  39. 39.
    Shaw, K.N.F., McMillan, A., and Armstrong, M.D., J. Org. Chem., 1958, vol. 23, p. 27. doi 10.1021/jo01095a010.CrossRefGoogle Scholar
  40. 40.
    Simchen, G. and Siegl, G., Synthesis, 1989, vol. 12, p. 945. doi 10.1055/s-1989-27439CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Mamedov
    • 1
    • 2
  • V. L. Mamedova
    • 1
    • 2
  • G. Z. Khikmatova
    • 1
    • 2
  • D. E. Korshin
    • 1
    • 2
  • O. G. Sinyashin
    • 1
    • 2
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazan, TatarstanRussia
  2. 2.Kazan State Technological UniversityKazan, TatarstanRussia

Personalised recommendations