Russian Journal of General Chemistry

, Volume 87, Issue 12, pp 2766–2775 | Cite as

Synthesis of New 1,3-Thiazolecarbaldehydes

  • V. O. Sinenko
  • S. R. Slivchuk
  • O. P. Mityukhin
  • V. S. Brovarets
Article
  • 3 Downloads

Abstract

H-Lithiation and Br-lithiation reactions of 1,3-thiazole were studied in order to obtain new thiazole derivatives. Four isomeric chloromethyl derivatives of 1,3-thiazole containing a protected aldehyde group like 2-(1,3-dioxolan-2-yl)-5-(chloromethyl)-1,3-thiazole, 5-(1,3-dioxolan-2-yl)-2-(chloromethyl)-1,3-thiazole, 4-(1,3-dioxolan-2-yl)-2-(chloromethyl)-1,3-thiazole, and 2-(1,3-dioxolan-2-yl)-4-(chloromethyl)-1,3-thiazole were synthesized. Their nucleophilic substitution reactions with dimethylamine and sodium methylthiolate were studied. New aldehydes of 1,3-thiazole series of low-molecular weight were obtained.

Keywords

1,3-thiazole 1,3-thiazole lithiation aldehydes 1,3-thiazole chloromethyl derivatives nucleophilic substitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chalopin, T., Alvarez Dorta, D., Sivignon, A., Caudan, M., Dumych, T., Bilyy, R., Deniaud, D., Barnich, N., Bouckaert, J., and Gouin, S.G., Org. Biomol. Chem., 2016, no. 14, p. 3913. doi 10.1039/C6OB00424ECrossRefGoogle Scholar
  2. 2.
    Giroud, M., Ivkovic, J., Martignoni, M., Fleuti, M., Trapp, N., Haap, W., Kuglstatter, A., Benz, J., Kuhn, B., Schirmeister, T., and Diederich, F., Chem. Med. Chem., 2017, vol. 12, p. 257. doi 10.1002/cmdc.201600563CrossRefGoogle Scholar
  3. 3.
    Suzuki, T., Muto, N., Bando, M., Itoh, Y., Masaki, A., Ri, M., Ota, Y., Nakagawa, H., Iida, S., Shirahige, K., and Miyata, N., Chem. Med. Chem., 2014, vol. 9, p. 657. doi 10.1002/cmdc.201300414.CrossRefGoogle Scholar
  4. 4.
    Murphy, J.M., Armijo, Aman L., Nomme, J., Lee, C.H., Smith, Q.A., Li, Z., Campbell, D.O., Liao, H.-I., Nathanson, D.A., Austin, W.R., Lee, J.T., Darvish, R., Wei, L., Wang, J., Su, Y., Damoiseaux, R., Sadeghi, S., Phelps, M.E., Herschman, H.R., Czernin, J., Alexandrova, A.N., Jung, M.E., Lavie, A., and Radu, C.G., J. Med. Chem., 2013, vol. 56, p. 6696. doi 10.1021/jm400457yCrossRefGoogle Scholar
  5. 5.
    James, D.I., Smith, K.M., Jordan, A.M., Fairweather, E.E., Griffiths, L.A., Hamilton, N.S., Hitchin, J.R., Hutton, C.P., Jones, S., Kelly, P., McGonagle, A.E., Small, H., Stowell, A.J., Tucker, J., Waddell, I.D., Waszkowycz, B., and Ogilvie, D.J., ACS Chem. Biol., 2016, vol. 11, p. 3179. doi 10.1021/acschembio.6b00609CrossRefGoogle Scholar
  6. 6.
    Sznaidman, M.L., Haffner, C.D., Maloney, P.R., Fivush, A., Chao, E., Goreham, D., Sierra, M.L., LeGrumelec, C., Xu, H.E., Montana, V.G., Lambert, M.H., Willson, T.M., Oliver, W.R., Jr., and Sternbach, D.D., Bioorg. Med. Chem. Lett., 2003, vol. 13, p. 1517. doi 10.1016/S0960-894X(03)00207-5CrossRefGoogle Scholar
  7. 7.
    Wei, Z. and Kozikowski, A.P., J. Org. Chem., 2003, vol. 68, p. 9116. doi 10.1021/jo035140gCrossRefGoogle Scholar
  8. 8.
    Louvel, J., Guo, D., Soethoudt, M., Mocking, T., Lenselink, E.B., Mulder-Krieger, T., Heitman, L.H., and Ijzerman, A.P., Eur. J. Med. Chem., 2015, vol. 101, p. 681. doi 10.1016/j.ejmech.2015. 07.023CrossRefGoogle Scholar
  9. 9.
    Brunschweiger, A., Koch, P., Schlenk, M., Rafehi, M., Radjainia, H., Küppers, P., Hinz, S., Pineda, F., Wiese, M., Hockemeyer, J., Heer, J., Denonne, F., and Müller, C.E., Bioorg. Med. Chem., 2016, vol. 24, p. 5462. doi 10.1016/j.bmc.2016.09.003CrossRefGoogle Scholar
  10. 10.
    Siegrist, R., Pozzi, D., Jacob, G., Torrisi, C., Colas, K., Braibant, B., Mawet, J., Pfeifer, T., De Kanter, R., Roch, C., Kessler, M., Corminboeuf, O., and Bezençon, O., J. Med. Chem., 2016, vol. 59, p. 10661. doi 10.1021/acs.jmedchem.6b01356CrossRefGoogle Scholar
  11. 11.
    Crowley, V.M., Khandelwal, A., Mishra, S., Stothert, A.R., Huard, D.J., Zhao, J., Muth, A., Duerfeldt, A.S., Kizziah, J.L., Lieberman, R.L., Dickey, C.A., and Blagg, B., J. Med. Chem., 2016, vol. 59, p. 3471. doi 10.1021/acs.jmedchem.6b00085CrossRefGoogle Scholar
  12. 12.
    McLeod, M.C., Aubé, J., and Frankowski, K.J., Tetrahedron, 2016, vol. 72, p. 3766. doi 10.1016/j.bmcl.2016.10.065CrossRefGoogle Scholar
  13. 13.
    Yan, Z., Yaning, S., Liming, S., Sudan, H., Lingjun, M., Daohong, L., Xiao, L., Yongfen, M., Chunyan, L., Sisi, L., Hanying, R., Xiao-guang, L., Xiaodong, W., and Zhiyuan, Z., J. Med. Chem., 2017, vol. 60, p. 972. doi 10.1021/acs.jmedchem.6b01196CrossRefGoogle Scholar
  14. 14.
    Yanqun, Z., Ruiyuan, C., Tianhong, Z., Song, L., and Wu, Z., Eur. J. Med. Chem., 2015, vol. 97, p. 19. doi 10.1016/j.ejmech.2015.04.043CrossRefGoogle Scholar
  15. 15.
    Yu-Tao, Z., Teng-Teng, Z., Pei-Yi, W., Zhi-Bing, W., Lei, Z., Yi-Qiang, Y., Xiang, Z., Ming, H., and Song, Y., Chinese Chem. Lett., 2017, vol. 28, p. 253. doi 10.1016/j.cclet.2016.06.055CrossRefGoogle Scholar
  16. 16.
    Yasuma, T., Hashimoto, K., and Ito, M., EP Patent 2149550, 2010.Google Scholar
  17. 17.
    Sinenko, V.O., Slivchuk, S.R., Bal’on, Ya.G., and Brovarets, V.S., Russ. J. Gen. Chem., 2015, vol. 85, no. 8, p. 1855. doi 10.1134/S1070363215080113CrossRefGoogle Scholar
  18. 18.
    Kumar, V., Carabateas, P.M., Dority, J.A., Earley, W.G., Mallamo, J.P., Subramanyam, C., Aimone, L.D., Ault, B., DeHaven Hudkins, D.L., and Miller, M.S., J. Med. Chem., 1995, vol. 38, p. 1826. doi 10.1021/jm00010a028CrossRefGoogle Scholar
  19. 19.
    Ehmke, V., Quinsaat, J.E., Rivera-Fuentes, P., Heindl, C., Freymond, C., Rottmann, M., Brun, R., Schirmeisterb, T., and Diederich, F., Org. Biomol. Chem., 2012, vol. 10, p. 5764. doi 10.1039/c2ob00034bCrossRefGoogle Scholar
  20. 20.
    Houssin, R., Pommery, J., Salaün, M.-C., Deweer, S., Goossens, J.-F., Chavatte, P., and Henichart, J.-P., J. Med. Chem., 2002, vol. 45, p. 533. doi 10.1021/jm010297rCrossRefGoogle Scholar
  21. 21.
    Colombo, R., Wang, Z., Han, J., Balachandran, R., Daghestani, H.N., Camarco, D.P., Vogt, A., Day, B.W., Mendel, D., and Wipf, P., J. Org. Chem., 2016, vol. 81, p. 10302. doi 10.1021/acs.joc.6b01314CrossRefGoogle Scholar
  22. 22.
    Ung, A.T. and Pyne, S.G., Tetrahedron: Asym., 1998, vol. 9, p. 1395. doi 10.1016/S0957-4166(98)00104-9CrossRefGoogle Scholar
  23. 23.
    Cockerill, G.S. and Lackey, K.E., US Patent 006933299B1, 2005.Google Scholar
  24. 24.
    Kawagoe, K., Motoki, K., Odagiri, T., Suzuki, N., Chen, C., and Mimura, T., EP Patent 1612204A1, 2006.Google Scholar
  25. 25.
    Horiuchi, T., Takeda, Y., Haginoya, N., Miyazaki, M., Nagata, M., Kitagawa, M., Akahane, K., and Uoto, K., Chem. Pharm. Bull., 2011, vol. 59, p. 991. doi 10.1248/cpb.59.991CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. O. Sinenko
    • 1
  • S. R. Slivchuk
    • 1
  • O. P. Mityukhin
    • 1
  • V. S. Brovarets
    • 1
  1. 1.Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations