Russian Journal of General Chemistry

, Volume 87, Issue 1, pp 16–21 | Cite as

Electrochemical amination. Selective introduction of two amino groups into an aromatic ring



Indirect cathodic amination of anisole via a Ti(IV)–NH2OH system in aqueous solutions of sulfuric acid is studied. The major products of the radical cation substitution in these media are para- and ortho-anisidines and 4-methoxy-1,3-phenylenediamine. The most efficient electrochemical process takes place in 10–12 М H2SO4. Under these conditions, complete conversion of the source of amino radicals is observed, and the total current yields, which correspond to the yields per hydroxylamine, reach 60%.


cathode Ti(IV)/Ti(III) mediator system hydroxylamine anisole radical cation aromatic substitution 4-methoxy-1,3-phenylenediamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, P., Evans, M.G., and Higginson, W.C.E., J. Chem. Soc., 1951, no. 10, p. 2563.CrossRefGoogle Scholar
  2. 2.
    Seaman, H., Taylor, P.J., and Waters, W.A., J. Chem. Soc., 1954, no. 12, p. 4690.Google Scholar
  3. 3.
    Albisetti, C.J., Coffman, D.D., Hoover, F.W., Jenner, E.L., and Mochel, W.E., J. Am. Chem. Soc., 1959, vol. 81, no. 6, p. 1489.CrossRefGoogle Scholar
  4. 4.
    Minisci, F., Synthesis, 1973, no. 1, p. 1.CrossRefGoogle Scholar
  5. 5.
    Citterio, A., Gentile, A., Minisci, F., Navarrini, V., Sarravalle, M., and Ventura, S., J. Org. Chem., 1984, vol. 49, no. 23, p. 4479. doi 10.1021/jo00197a030CrossRefGoogle Scholar
  6. 6.
    Kuznetsova, N.I., Kuznetsova, L.I., Detusheva, L.G., Likholobov, V.A., Pez, G.P., and Cheng, H., J. Mol. Catal. A, 2000, vol. 161, nos. 1–2, p. 1. doi 10.1016/S1381-1169(00)00206-5CrossRefGoogle Scholar
  7. 7.
    Zhu, L.F., Guo, B., Tang, D.Y., Hu, X.K., Li, G.Y., and Hu, C.W., J. Catal., 2007, vol. 245, no. 2, p. 446. doi 10.1016/j.jcat.2006.11.007CrossRefGoogle Scholar
  8. 8.
    Parida, K.M., Dash, S.S., and Singha, S., Appl. Catal. A: General, 2008, vol. 351, no. 1, p. 59. doi 10.1016/j.apcata.2008.08.027CrossRefGoogle Scholar
  9. 9.
    Parida, K.M., Rath, D., and Dash, S., J. Mol. Catal. A, 2010, vol. 318, nos. 1–2, p. 85. doi 10.1016/j.molcata.2009.11.011CrossRefGoogle Scholar
  10. 10.
    Tomat, R. and Rigo, A., J. Electroanal. Chem., 1977, vol. 75, p. 629.Google Scholar
  11. 11.
    Steckhan, E., Anwendung indirekter Elektrolysen fur organische Synthesen und Spektroelektrochemische Untersuchung anodischer Olefinoxidationen: Habilitationsschrift, Münster Westfalischen Univ., 1977.Google Scholar
  12. 12.
    Lisitsyn, Yu.A. and Kargin, Yu.M., Russ. J. Electrochem., 2000, vol. 36, no. 2, p. 89. doi 10.1007/BF02756893CrossRefGoogle Scholar
  13. 13.
    Lisitsyn, Yu.A., Kargin, Yu.M., and Busygina, N.V., Ross. Khim. Zh., 2005, vol. 49, no. 5, p. 121.Google Scholar
  14. 14.
    Lisitsyn, Yu.A. and Sukhov, A.V., Russ. J. Electrochem., 2011, vol. 47, no. 10, p. 1180. doi 10.1134/S1023193511100120CrossRefGoogle Scholar
  15. 15.
    Lisitsyn, Yu.A. and Sukhov, A.V., Russ. J. Electrochem., 2013, vol. 49, no. 1, p. 91. doi 0.1134/S1023193513010126CrossRefGoogle Scholar
  16. 16.
    Librovich, N.B. and Maiorov, V.D., Izv. Akad. Nauk SSSR, Ser. Khim., 1977, no. 3, p. 684.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Butlerov Chemical InstituteKazan (Volga) Federal UniversityKazan, TatarstanRussia

Personalised recommendations