Russian Journal of General Chemistry

, Volume 87, Issue 1, pp 1–7 | Cite as

Water state in nanocrystals of zirconium dioxide prepared under hydrothermal conditions and its influence on structural transformations

Article

Abstract

The state of water in the nanocrystals of zirconium dioxide prepared via hydrothermal synthesis has been studied. Water molecules are localized at the nanoparticles surface as well as in the crystal structure of tetragonal modification of zirconia. The effect of water elimination on the structural transformations in the nanocrystals has been analyzed. Stabilization of tetragonal modification of zirconia at the lower temperature range is related to the presence of water in the nanocrystals.

Keywords

nanocrystal zirconium dioxide ZrO2 hydrothermal synthesis structural transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Livage, J., Chem. Mater., 1991, vol. 3, no. 4, p. 578. doi 10.1021/cm00016a006CrossRefGoogle Scholar
  2. 2.
    Fei, Li, Yanhuai, Li, Zhongxiao, Song, Fei, Ma, Kewei, Xu, and Hong, Cui, J. Eur. Ceram. Soc., 2015, vol. 35, no. 8, p. 2361. doi 10.1016/j.jeurceramsoc. 2015.02.017CrossRefGoogle Scholar
  3. 3.
    Srdi’c, V.V. and Winterer, M., J. Eur. Ceram. Soc., 2006, vol. 26, no. 15, p. 3145. doi 10.1016/j.jeurceramsoc. 2005.10.006CrossRefGoogle Scholar
  4. 4.
    Dwivedi, R., Maurya, A., Verma, A., Prasada, R., and Bartwal, K.S., J. Alloys Compd., 2011, vol. 509, p. 6848. doi 10.1016/j.jallcom.2011.03.138CrossRefGoogle Scholar
  5. 5.
    Isfahani, T.D., Javadpour, J., Khavandi, A., Dinnebier, R., Rezaie, H.R., and Goodarzi, M., Int. J. Refractory Metals Hard Mater., 2012, vol. 31, p. 21. doi 10.1016/j.ijrmhm.2011.08.011CrossRefGoogle Scholar
  6. 6.
    Piticescu, R.R., Malic, B., Kosec, M., Motoc, A., Monty, C., Soare, I., Kosmacb, T., and Daskoblerb, A., J. Eur. Ceram. Soc., 2004, vol. 24, no. 6, p. 1941. doi 10.1016/S0955-2219(03)00544-2CrossRefGoogle Scholar
  7. 7.
    Chevalier, J. and Gremillard, L., J. Eur. Ceram. Soc., 2009, vol. 29, no. 7, p. 1245. doi 10.1016/j.jeurceramsoc.2008.08.025CrossRefGoogle Scholar
  8. 8.
    Trunec, M. and Chlup, Z., Scr. Mater., 2009, vol. 61, no. 1, p. 56. doi 10.1016/j.scriptamat.2009.03.019CrossRefGoogle Scholar
  9. 9.
    Lima, R. and Marple, B., J. Therm. Spray Technol., 2008, vol. 17, no. 5, p. 846. doi 10.1007/s11666-008- 9217-xCrossRefGoogle Scholar
  10. 10.
    Maglia, F., Tredici, I.G., and Tamburini, U.A., J. Eur. Ceram. Soc., 2013, vol. 33, p. 1045. doi 10.1016/J.jeurceramsoc.2012.12.004CrossRefGoogle Scholar
  11. 11.
    Chaim, R., Levin, M., Shlaye, A., and Estourne, C., Adv. Appl. Ceram., 2008, vol. 107, no. 3, p. 159. doi 10.1179/174367508X297812CrossRefGoogle Scholar
  12. 12.
    Almjasheva, O.V., Gusarov, V.V., International Analytical Review ALITinform: Cement. Concrete. Dry Mixtures, 2009, nos. 4–5 (11), p. 12.Google Scholar
  13. 13.
    Artamonova, O.V., Almjasheva, O.V., Mittova, I.Ya., and Gusarov, V.V., Perspekt. Mater., 2009, no. 1, p. 91.Google Scholar
  14. 14.
    Shukla, S. and Seal, S., Intern. Mater. Rev., 2005, vol. 50, no. 1, p. 45. doi 10.1179/174328005X14267CrossRefGoogle Scholar
  15. 15.
    Murase, Y. and Kato, E., J. Am. Ceram. Soc., 1983, vol. 66, p. 196. doi 10.1002/chin.198322008CrossRefGoogle Scholar
  16. 16.
    Yoshimura, M., Am. Ceram. Soc. Bull., 1988, vol. 67. p. 1950.Google Scholar
  17. 17.
    Pozhidaeva, O.V., Korytkova, E.N., Drozdova, I.A., and Gusarov, V.V., Russ. J. Gen. Chem., 1999, vol. 69, no. 8, p. 1219.Google Scholar
  18. 18.
    Oleinikov, N.N., Pentin, I.V., Murav’eva, G.P., and Ketsko, V.A., Russ. J. Inorg. Chem., 2001, vol. 46, no. 9, p. 1413.Google Scholar
  19. 19.
    Pozhidaeva, O.V., Korytkova, E.N., Romanov, D.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2002, vol. 72, no. 6, p. 849. doi 10.1023/a:1020409702215CrossRefGoogle Scholar
  20. 20.
    Almjasheva, O.V., Nanosystems: Physics, Chemistry, Mathematics, 2015, vol. 6, no. 5, p. 697. doi 10.17586/2220-8054-2015-6-5-697-703Google Scholar
  21. 21.
    Guo, X. and Schober, T., J. Am. Ceram. Soc., 2004, vol. 87, no. 4, p. 746. doi 10.1111/j.1551-2916. 2004.00746.xCrossRefGoogle Scholar
  22. 22.
    Murase, Y. and Kato, E., J. Am. Ceram. Soc., 1979, vol. 62, nos. 9–10, p. 527. doi 10.1111/j.1151-2916. 1979.tb19121.xCrossRefGoogle Scholar
  23. 23.
    Garvie, R.C., J. Phys. Chem., 1965, vol. 69, no. 4, p. 1238. doi 10.1021/j100888a024CrossRefGoogle Scholar
  24. 24.
    Rashad, M.M. and Baioumy, H.M., J. Mater. Proc. Technol., 2008, vol. 195, p. 178. doi 10.1016/j.jmatprotec.2007.04.135CrossRefGoogle Scholar
  25. 25.
    Bugrov, A.N., Vlasova, E.N., Mokeev, M.V., Popova, E.N., Ivan’kova, E.M., Al’ myasheva, O.V., and Svetlichnyi, V.M., Polymer Sci. (B), 2012, vol. 54, nos. 9–10, p. 486. doi 10.1134/S1560090412100041Google Scholar
  26. 26.
    Almjasheva, O.V., Gusarov, V.V., Danilevich, Ya.B., Kovalenko, A.N., and Ugolkov, V.L., Glass Phys. Chem., 2007, vol. 33, no. 6, p. 587. doi 10.1134/S1087659607060090CrossRefGoogle Scholar
  27. 27.
    Al’myasheva, O.V., Vlasov, E.A., Khabenskii, V.B., and Gusarov, V.V., Russ. J. Appl. Chem., 2009, vol. 82, no. 2, p. 217. doi 10.1134/S1070427209020104CrossRefGoogle Scholar
  28. 28.
    Almjasheva, O.V., Ugolkov, V.L., and Gusarov, V.V., Russ. J. Appl. Chem., 2008, vol. 81, no. 4, p. 609. doi 10.1134/S1070427208040071CrossRefGoogle Scholar
  29. 29.
    Kul’kov, S.N. and Buyakova, S.P., Ross. Nanotekhnol., 2007, nos. 1–2, p. 119.Google Scholar
  30. 30.
    Almjasheva, O.V., Fedorov, B.A., Smirnov, A.V., and Gusarov, V.V., Nanosystems: Physics, Chemistry, Mathematics, 2010, vol. 1, no. 1, p. 26.Google Scholar
  31. 31.
    Pletnev, R.N., Ivakin, A.A., Kleshhev, D.G., Denisova, T.A., and Burmistrov, V.A., Gidratirovannye oksidy elementov IV i V grupp (Hydrated Oxides of IV and V Groups), Moscow Nauka, 1986.Google Scholar
  32. 32.
    Denisova, T.A., Maksimova, L.G., Zhuravlev, N.A., Baklanova, Ya.V., Lejnidova, O.N., and Baklanova, I.V., Intern. Sci. J. Altern. Energy Ecology., 2007, no. 7(51), p. 29.Google Scholar
  33. 33.
    Livage, J., Doi, K., and Mazieres, G., J. Am. Ceram. Soc., 1968, vol. 51, no. 6, p. 349. doi 10.1111/j.1151- 2916.1968.tb15952.xCrossRefGoogle Scholar
  34. 34.
    Keramidas, V.G. and White, W.B., J. Am. Ceram. Soc., 1974, vol. 57, no. 1, p. 22. doi 10.1111/j.1151- 2916.1974.tb11355.xCrossRefGoogle Scholar
  35. 35.
    Tani, E., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc., 1983, vol. 66, p. 11. doi 10.1111/j.1151- 2916.1983.tb09958.xCrossRefGoogle Scholar
  36. 36.
    Gutzov, S., Ponahlo, J., Lengauer, C.L., and Beran, A., J. Am. Ceram. Soc., 1994, vol. 77, no. 6, p. 1649. doi 10.1111/j.1151-2916.1994.tb09769.xCrossRefGoogle Scholar
  37. 37.
    Bondioli, F., Ferrari, A.M., Leonelli, C., Siligardi, C., and Pellacani, G.C., J. Am. Ceram. Soc., 2001, vol. 84, no. 11, p. 2728. doi 10.1111/j.1151-2916.2001.tb01084.xCrossRefGoogle Scholar
  38. 38.
    Lupo, F., Cockcroft, J.K., Barnes, P., Stukas, P., Vickers, M., Norman, C., and Bradshaw, H., Phys. Chem. Chem. Phys., 2004, no. 6, p. 1837. doi 10.1039/B315219G.CrossRefGoogle Scholar
  39. 39.
    Becker, J., Bremholm, M., Tyrsted, C., Pauw, B., Jensen, K.M., Eltzholt, J., Christensen, M., and Iversen, B.B., J. Appl. Crystallogr., 2010, vol. 43, p. 729. doi 10.1107/S0021889810014688CrossRefGoogle Scholar
  40. 40.
    Sharikov, F.Yu., Almjasheva, O.V., and Gusarov, V.V., Russ. J. Inorg. Chem., 2006, vol. 51, no. 10, p. 1538. doi 10.1134/S0036023606100044CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.St. Petersburg State Electrotechnical University (LETI)St. PetersburgRussia
  2. 2.Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations