Russian Journal of General Chemistry

, Volume 86, Issue 13, pp 2978–2982 | Cite as

Removal of aluminum by aquatic plants Ceratophyllum demersum and Chara fragilis from water of experimental ecosystems

Article
  • 22 Downloads

Abstract

Changes in the concentration of the aluminum ions in water of experimental systems (microcosms) have been studied. The Al ion concentration was measured by the fluorescent method. As macrophytes for microcosm incubation served hornwort Ceratophyllum demersum and stonewort Chara fragilis, with the latter hydrobiont used for the first time in similar experiments. It has been convincingly proven that, in the microcosms with the aquatic plants tested, the Al ion concentration decreased much faster than in the macrophyte-free control microcosms. The data obtained suggest that Ceratophyllum demersum and Chara fragilis are promising candidates for phytoremediation applications.

Keywords

aluminum phytotechnology microcosms chemical pollution water quality fluorescence hydrobionts phytoremediation Ceratophyllum demersum Chara fragilis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagrov, N.M., Osnovy otraslevykh tekhnologii: uchebnoe posobie (Basic Principles of Industry-Specific Technologies: A Textbook), St. Petersburg: GUEF, 2006.Google Scholar
  2. 2.
    Gorynin, I.V., Alyuminievye splavy. Primenenie alyuminievykh splavov. Spravochnoe rukovodstvo (Aluminum Alloys: Use of Aluminum Alloys: A Reference Manual), Moscow: Metallurgiya, 1978.Google Scholar
  3. 3.
    Klyuchnikov, N.G., Alyuminii. Uchebnoe posobie (Aluminum: A Textbook), Moscow: Gosizdat, 1958.Google Scholar
  4. 4.
    http://fedpress.ru/news/ecology/news_envir/zapadnosibirskii- metkombinat-zastavili-pogasit-ushcherb-zazagryaznenie- vodoemov (accessed December 4, 2015).Google Scholar
  5. 5.
    http://www.priroda.su/item/1869 (accessed December 3, 2015).Google Scholar
  6. 6.
    http://dic.academic.ru/dic.nsf/enc_colier/1021/ zagryaznenie-vody/slovari-i-entsiklopedii (accessed December 4, 2015).Google Scholar
  7. 7.
    http://www.ovallab.ru/him50-7.htm (accessed December 2, 2015).Google Scholar
  8. 8.
    Goulet, R.R., Lalonde, J.D., Munger, C., Dupuis, S., Dumont-Frenette, G., Premont, S., and Campbell, P.G., Water Res., 2005, no. 11, p. 2291.CrossRefGoogle Scholar
  9. 9.
    Gallon, C., Munger, C., Premont, S., and Campbell, P.G., Water, Air, and Soil Pollution, 2004, vol. 153, p. 135.CrossRefGoogle Scholar
  10. 10.
    Abu Bakar, A.F., Yusoff, I., Fatt, N.T., Othman, F., and Ashraf, M.A., Chem. Ecol., 2014, no. 1, p. 22.Google Scholar
  11. 11.
    Umebese, C.E. and Motajo, A.F., J. Environ. Biol., 2008, no. 2, p. 197.Google Scholar
  12. 12.
    Yang, Z., Chen, J., Dou, R., Gao, X., Mao, C., and Wang, L., Int. J. Environ. Res. Public Health, 2015, no. 12, p. 15100.CrossRefGoogle Scholar
  13. 13.
    Bespamyatnov, G.P. and Krotov, Yu.A., Predel’nodopustimye kontsentratsii khimicheskikh veshchestv v okruzhayushchei srede. Spravochnik (Maximum Permissible Concentrations of Chemicals in the Environment: A Handbook), Leningrad: Khimiya, 1985.Google Scholar
  14. 14.
    Okruzhayushchaya sreda: Entsiklopedicheskii slovar’- spravochnik (Environment: Encyclopedic Dictionary), Moscow: Progress, 1993. http://www.etch.ru/ norma.php?art=4 (accessed December 1, 2015).Google Scholar
  15. 15.
    Ivanter, E.V. and Medvedev, N.V., Ekologicheskaya toksikologiya prirodnykh populyatsii (Environmental Toxicology of Natural Populations), Moscow: Nauka, 2007.Google Scholar
  16. 16.
    Donchenko, V.K., Ivanova, V.V., and Pitul’ko, V.M., Ekologo-khimicheskie osobennosti pribrezhnykh akvatorii (Ecological and Chemical Features of Coastal Water Areas), St. Petersburg: NITsEB RAN, 2008.Google Scholar
  17. 17.
    Ostroumov, S.A., Hydrobiol., 2002, vol. 469, p. 203.CrossRefGoogle Scholar
  18. 18.
    Ostroumov, S.A., Kolesov, G.M., Poklonov, V.A., and Kotelevtsev, S.V., Ekol. Khim., 2009, vol. 18, no. 4, p. 222.Google Scholar
  19. 19.
    Ostroumov, S.A., Kotelevtsev, S.V., Shestakova, T.V., Kolotilova, N.N., Poklonov, V.A., and Solomonova, E.A., Ekol. Khim., 2009, vol. 18, no. 2, p. 111.Google Scholar
  20. 20.
    Poklonov, V.A., Ekol. Vestn. Ross., 2015, no. 12, p. 66.Google Scholar
  21. 21.
    Poklonov, V.A., Voda: Khim. Ekol., 2015, no. 10, p. 82.Google Scholar
  22. 22.
    Ostroumov, S.A., Shestakova, T.V., Kotelevtsev, S.V., Solomonova, E.A., Golovnya, E.G., and Poklonov, V.A., Vodn. Khoz. Ross., 2009, no. 2, p. 58.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Moiseev International Independent Ecological and Politological UniversityMoscowRussia

Personalised recommendations