Iron(III) Complexes Based on N-Benzylidene-2-Hydroxy-3,5-Di-tert-Butylaniline


Five-coordinate iron(III) complexes, (ImPh)2FeX (X = Cl (I), Br (II), I (III), N3 (IV)) containing two bidentate Schiff bases (N-benzylidene-2-hydroxy-3,5-di-tert-butylaniline (ImPh)H) and a halogen atom/azide group in the coordination sphere were synthesized and characterized in detail. According to the magnetic susceptibility measurements for polycrystalline samples of IIV and Mössbauer spectroscopy data in the 2–300 K range, the complexes contain a high-spin metal ion (HS Fe3+, d5, SFe = 5/2). Compounds IIV are stable in the crystalline state in the absence of oxygen or air moisture; however, in solution, they undergo symmetrization, resulting in the formation of the tris-ligand complex (ImPh)3Fe (V), which was also synthesized by the reaction (ImPh)H and FeCl3 (3 : 1). Unlike five-coordinate complexes IIV, six-coordinate complex V contains low-spin iron(III) ion (LS Fe3+, d5, SFe = 1/2). The molecular structure of I was determined by X-ray diffraction (CIF file CCDC no. 1996527).

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    van Koningsbruggen, P.J., Maeda, Y., and Oshio, H., Top. Curr. Chem., 2004, vol. 233, p. 259.

    CAS  Article  Google Scholar 

  2. 2

    Nihei, M., Shiga, T., Maeda, Y., and Oshio, H., Coord. Chem. Rev., 2007, vol. 251, p. 2606.

    CAS  Article  Google Scholar 

  3. 3

    Harding, D.J., Harding, P., and Phonsri, W., Coord. Chem. Rev., 2016, vol. 313, p. 38.

    CAS  Article  Google Scholar 

  4. 4

    Ksenofontov, V., Gaspar, A.B., and Gutlich, P., Top. Curr. Chem., 2004, vol. 235, p. 23.

    CAS  Article  Google Scholar 

  5. 5

    Hauser, A., Top. Curr. Chem., 2004, vol. 234, p. 155.

    CAS  Article  Google Scholar 

  6. 6

    Létard, J.-F., J. Mater. Chem., 2006, vol. 16, p. 2550.

    Article  Google Scholar 

  7. 7

    Cannizzo, A., Milne, C.J., Consani, C., et al., Coord. Chem. Rev., 2010, vol. 254, p. 2677.

    CAS  Article  Google Scholar 

  8. 8

    Bousseksou, A., Varret, F., Goiran, M., et al., Top. Curr. Chem., 2004, vol. 235, p. 65.

    CAS  Article  Google Scholar 

  9. 9

    Halcrow, M.A., Spin-Crossover Materials, Properties and Applications, New York: Wiley, 2013.

    Google Scholar 

  10. 10

    Starikova, A., Starikov, A.G., and Minkin, V.I., Russ. Chem. Bull., 2016, vol. 65, p. 1464.

    CAS  Article  Google Scholar 

  11. 11

    Starikova, A.A., Starikov, A.G., and Minkin, V.I., Russ. J. Coord. Chem., 2017, vol. 43, p. 718.

    CAS  Article  Google Scholar 

  12. 12

    Starikov, A.G., Chegerev, M.G., Starikova, A.A., and Minkin, V.I., Russ. J. Coord. Chem., 2019, vol. 45, p. 675.

    CAS  Article  Google Scholar 

  13. 13

    Starikov, A.G., Starikova, A.A., Chegerev, M.G., and Minkin, V.I., Russ. Chem. Bull., 2019, vol. 68, p. 725.

    CAS  Article  Google Scholar 

  14. 14

    Starikova, A.A., Chegerev, M.G., Starikov, A.G., and Minkin, V.I., J. Comput. Chem., 2019, vol. 40, p. 2284.

    CAS  Article  Google Scholar 

  15. 15

    Starikova, A.A., Metelitsa, E.A., and Starikov, A.G., J. Struct. Chem., 2019, vol. 60, p. 1219.

    CAS  Article  Google Scholar 

  16. 16

    Earnshaw, A., King, E.A., and Larkworthy, L.F., Chem. Commun. (London), 1965, p. p. 180.

  17. 17

    Earnshaw, A., King, E.A., and Larkworthy, L.F., J. Chem. Soc. A, 1969, p. 2459.

  18. 18

    Haller, K.J., Johnson, P.L., Feltham, R.D., et al., Inorg. Chim. Acta, 1979, vol. 33, p. 119.

    CAS  Article  Google Scholar 

  19. 19

    Fitzsimmons, B.W., Larkworthy, L.F., and Rogers, K.A., Inorg. Chim. Acta, 1980, vol. 44, p. L53.

    CAS  Article  Google Scholar 

  20. 20

    Wells, F.V., McCann, S.W., Wickman, H.H., et al., Inorg. Chem., 1982, vol. 21, p. 2306.

    CAS  Article  Google Scholar 

  21. 21

    Koenig, E., Ritter, G., Waigel, J., et al., Inorg. Chem., 1987, vol. 26, p. 1563.

    CAS  Article  Google Scholar 

  22. 22

    Weber, B., Gorls, H., Rudolph, M., and Jäger, E.-G., Inorg. Chim. Acta, 2002, vol. 337, p. 247.

    CAS  Article  Google Scholar 

  23. 23

    Nakamura, M., Coord. Chem. Rev., 2006, vol. 250, p. 2271.

    CAS  Article  Google Scholar 

  24. 24

    Ohgo, Y., Chiba, Y., Hashizume, D., et al., Chem. Commun., 2006, p. 1935.

  25. 25

    Chun, H., Weyhermüller, T., Bill, E., and Wieghardt, K., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, p. 2489.

    CAS  Article  Google Scholar 

  26. 26

    Chun, H., Bill, E., Weyhermüller, T., and Wieghardt, K., Inorg. Chem., 2003, vol. 42, p. 5612.

    CAS  Article  Google Scholar 

  27. 27

    Abakumov, G.A., Cherkasov, V.K., Bubnov, M.P., et al., Russ. Chem. Bull. Int. Ed., 2006, vol. 55, p. 44.

    CAS  Article  Google Scholar 

  28. 28

    Piskunov, A.V., Pashanova, K.I., Ershova, I.V., et al., J. Mol. Struct., 2018, vol. 1165, p. 51.

    CAS  Article  Google Scholar 

  29. 29

    Ershova, I.V., Bogomyakov, A.S., Kubrin, S.P., et al., Inorg. Chim. Acta, 2020, vol. 503, p. 119402.

    Article  Google Scholar 

  30. 30

    Credendino, L. and Sproules, S., Asian J. Org. Chem., 2019, vol. 9, p. 421.

    Article  Google Scholar 

  31. 31

    Perrin, D.D., Armarego, W.L.F., and Perrin, D.R., Purification of Laboratory Chemicals, Oxford: Pergamon, 1980.

    Google Scholar 

  32. 32

    Yasuhiko, S., Norio, K., and Terunori, F., Chem. Lett., 2002, vol. 31, p. 358.

    Article  Google Scholar 

  33. 33

    Rigaku Oxford Diffraction. CrysAlis Pro Software System. Version, Wroclaw: Rigaku Corporation, 2015.

  34. 34

    Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  35. 35

    Spek, A.L., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 9.

    CAS  Article  Google Scholar 

  36. 36

    Piskunov, A.V., Ershova, I.V., Bogomyakov, A.S., et al., Inorg. Chem., 2015, vol. 54, p. 6090.

    CAS  Article  Google Scholar 

  37. 37

    Piskunov, A.V., Ershova, I.V., Bogomyakov, A.S., and Fukin, G.K., Inorg. Chem. Commun., 2016, vol. 66, p. 94.

    CAS  Article  Google Scholar 

  38. 38

    Ershova, I.V., Bogomyakov, A.S., Fukin, G.K., and Piskunov, A.V., Eur. J. Inorg. Chem., 2019, vol. 2019, p. 938.

    CAS  Article  Google Scholar 

  39. 39

    Beilstein, F., Ber. Dtsch. Chem. Ges., 1872, vol. 5, p. 620.

    Article  Google Scholar 

  40. 40

    Addison, A.W., Rao, T.N., Reedijk, J., et al., Dalton Trans., 1984, p. 1349.

  41. 41

    Mukherjee, S., Weyhermüller, T., Bothe, E., and Chaudhuri, P., Eur. J. Inorg. Chem., 2003, vol. 2003, p. 1956.

    Article  Google Scholar 

  42. 42

    Suzuki, Y., Tanaka, H., Oshiki, T., et al., Chem. Asian J., 2006, vol. 1, p. 878.

    CAS  Article  Google Scholar 

  43. 43

    Zhang, L., Luo, X., Gao, W., et al., Organometallics, 2013, vol. 32, p. 6277.

    CAS  Article  Google Scholar 

  44. 44

    Safaei, E., Alaji, Z., Panahi, F., et al., New J. Chem., 2018, vol. 42, p. 7230.

    CAS  Article  Google Scholar 

  45. 45

    Batsanov, S.S. Russ. J. Inorg. Chem. 1991, vol. 36, p. 1694.

    Google Scholar 

Download references


The studies were carried out using research equipment of the Center for Collective Use “Analytical Center of the Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences” at the Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences and supported by the Federal Research Program “Research and Development in the Priority Areas of the Science and Technology Sector of Russia for 2014–2020” (unique identifier of the project: RFMEFI62120X0040).


The study was supported by the Russian Science Foundation (project no. 18-73-00268).

Author information



Corresponding author

Correspondence to A. V. Piskunov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ershova, I.V., Bogomyakov, A.S., Kubrin, S.P. et al. Iron(III) Complexes Based on N-Benzylidene-2-Hydroxy-3,5-Di-tert-Butylaniline. Russ J Coord Chem 47, 1–9 (2021).

Download citation


  • iron(III)
  • Schiff bases
  • spin state
  • magnetic properties
  • X-ray diffraction
  • Mössbauer spectroscopy