Skip to main content
Log in

Effect of the Nature of Haloacetic Acids on the Type of Morpholine Complexes Formed. Crystal Structure of the First Palladium Tetracarboxylate with Monocarboxylic Acid: Morpholinium Tetrakis(trifluoroacetato)palladate(II), (O(CH2CH2)2NH2)2[Pd(CF3COO)4]

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The effect of the nature of halogen-substituted carboxylic acids RCOOH, where R is ClCH2, Cl2CH, Cl3C, or F3C, on the complexation of palladium halocarboxylates with morpholine C4H9NO was investigated. Reactions with ClCH2COOH and Cl2CHCOOH gave binuclear complexes [(C4H9NO)2Pd2(μ-OOCR)2(OOCR)2] with palladium-coordinated morpholine, whereas reactions with Cl3CCOOH and F3CCOOH afforded the first tetra(halocarboxylate) palladium complexes with protonated morpholine as the cation, (C4H10NO)2[Pd(RCOO)4]. The acid–base balance of morpholine and halocarboxylic acid was the key factor determining the composition of the resulting complexes. For the formation of palladium tetra(halocarboxylates) with morpholine, the difference between the morpholine and acid pKa values should be not lower than 7.63. X-ray diffraction studies were carried out for the first tetra(halocarboxylate) palladium complex with a monocarboxylic acid (C4H10NO)2[Pd(OOCCF3)4 ∙ 2H2O] (I) and for trans-[(C4H9NO)2Pd(OOCCH2Cl)2 ∙ 2H2O] (II), trans-[(C4H9NO)2Pd(OOCCHCl2)2] (III), and trans-[(C4H9NO)2Pd(OOCCF3)2 ∙ 2H2O] (IV) (CIF files CCDC nos. 1008564, 1894300, 1008566, and 1894299, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Rosenberg, B., Plat. Met. Rev., 1971, vol. 15, no. 2, p. 42.

    CAS  Google Scholar 

  2. Lippert, B., Cisplatin: Chemistry and Biochemistry of Leading Anticancer Drug, Weinheim: Wiley−VCH, 1995.

    Google Scholar 

  3. Fulford, A., Plat. Met. Rev., 1966, vol. 40, no. 4, p. 161.

    Google Scholar 

  4. Giachetti, S., Perpoint, B., Zidani, R., et al., J. Clin. Oncol., 2000, vol. 18, p. 136.

    Article  Google Scholar 

  5. Weiss, R.V. and Poster, D.S., Cancer Treat. Rev., 1982, vol. 9, p. 37.

    Article  CAS  PubMed  Google Scholar 

  6. Groth, S., Nielsen, H., Sorensen, J., et al., Cancer Chemother. Pharm., 1986, vol. 17, p. 191.

    Article  CAS  Google Scholar 

  7. Petrov, V.I., Fisenko, V.P., Arzamatsev, E.V., et al., Guide on Experimental (Pre-Clinical) Study of New Substances for Pharmacology, Moscow, 2000, p. 398.

    Google Scholar 

  8. Brienza, S., Vignoud, J., Itznaki, M., et al., Proc. Am. Soc. Clin. Oncol., 1995, vol. 14, p. 209.

    Google Scholar 

  9. Dress, M., Dengler, W.M., Hendrics, H.R., et al., Eur. J. Cancer. A, 1995, vol. 31, p. 356.

    Article  Google Scholar 

  10. Levi, F., Perpoint, B., Garuit, C., et al., Eur. J. Cancer. A, 1993, vol. 29, p. 1608.

    Google Scholar 

  11. Tusekbozic, L., Furlani, A., Scarcia, V., and Balzarini, E., J. Inorg. Biochem., 1998, vol. 72, nos. 3–4, p. 201.

    Article  CAS  Google Scholar 

  12. Wimmer, F.L., Wimmer, S., Castan, P., Cros, S., et al., Anticancer Res., 1989, vol. 9, p. 791.

    CAS  PubMed  Google Scholar 

  13. Fiallo, M.M. and Garnier-Suillerot, A., Inorg. Chem., 1987, vol. 137, p. 119.

    CAS  Google Scholar 

  14. Quroga, A.G., Perez, J.M., Montero, E.J., et al., J. Inorg. Biochem., 1999, vol. 75, no. 4, p. 293.

    Article  Google Scholar 

  15. Ivanova, N.A., Kurbakova, A.P., Erofeev, V.V., et al., Zh. Neorg. Khim., 1991, vol. 36, no. 11, p. 2821.

    CAS  Google Scholar 

  16. Bouquillon, S., D’Hardemare, A.M., Averbuch-Pouchot, M.T., et al., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1999, vol. 55, p. 2028.

    Article  Google Scholar 

  17. Pointtillart, F., Train, C., Villain, F., et al., J. Am. Chem. Soc., 2007, vol. 129, p. 1327.

    Article  CAS  Google Scholar 

  18. Ammar, R.A.A., Fluide Phase Equilibria, 2009, vol. 285, p. 116.

    Google Scholar 

  19. Plutin, A.M., Mocelo, R., Alvarez, A., et al., J. Inorg. Biochem., 2014, vol. 134, p. 76.

  20. Barrac, V., Roch, F.V., Morel, L., et al., Inorg. Chim. Acta, 2016, vol. 446, p. 54.

  21. Zakharova, I.A. (Efimenko), Issledovaniya po neorganicheskoi khimii i khimicheskoi tekhnologii (Studies in Inorganic Chemistry and Chemical Engineering), Moscow: Nauka, 1988, p. 171.

    Google Scholar 

  22. Efimenko, I.A. and Shishilov, O.N., Russ. J. Inorg. Chem., 2012, vol. 57, no. 14, p. 1695.

    Article  CAS  Google Scholar 

  23. Efimenko, I.A., Churakov, A.V., Ivanova, N.A., et al., Russ. J. Inorg. Chem., 2017, vol. 62, no. 11, p. 1469.

    Article  CAS  Google Scholar 

  24. Grekhova, A.K., Gorbacheva, L.B., Ivanova, N.A., and Efimenko, I.A., Zh. Biomed. Khim., 2013, vol. 59, no. 1, p. 107.

    Article  CAS  Google Scholar 

  25. Efimenko, I.A., Shishilov, O.N., Ivanova, N.A., and Erofeeva, O.S., Precious Met., 2012, vol. 33, p. 240.

    Google Scholar 

  26. Cherkashina, N.V., Kozitcyna, N.Yu., Aleksandrova, G.G., et al., Mend. Commun., 2002, vol. 12, no. 2, p. 49.

    Article  CAS  Google Scholar 

  27. Efimenko, I.A., Ankudinova, P.V., Kuz’mina, L.G., et al., Russ. J. Inorg. Chem., 2015, vol. 60, no. 7, p. 848.

    Article  CAS  Google Scholar 

  28. Shishilov, O.N., Stromnova, T.A., Churakov, A.V., et al., Russ. J. Inorg. Chem., 2006, vol. 51, no. 4, p. 574.

    Article  Google Scholar 

  29. Sheldrick, G.M., SADABS. Program for Scaling and Correction of Area Detector Data, Göttingen: Univ. of Göttingen, 1997.

    Google Scholar 

  30. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 31.

    Article  CAS  Google Scholar 

  31. Allen, F.H., Acta. Crystallogr., Sect. B: Sctruct. Sci., 2002, vol. 58, no. 1, p. 380.

    Google Scholar 

  32. Efimenko, I.A., Podobedov, R.T., Churakov, A.V., et al., Russ. J. Coord. Chem., 2011, vol. 37, no. 8, p. 625. https://doi.org/10.1134/S1070328411080021

    Article  CAS  Google Scholar 

  33. Pandey, R.N. and Henry, P.M., Can. J. Chem., 1974, vol. 52, p. 1241.

    Article  CAS  Google Scholar 

  34. Kukushkin, Yu.N., Khimiya koordinatsionnykh soedinenii (Chemistry of Coordination Compounds), Moscow: Vysshaya Shkola , 1955.

  35. Nakamoto, K., Infrared Spectra and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Efimenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimenko, I.A., Churakov, A.V., Erofeeva, O.S. et al. Effect of the Nature of Haloacetic Acids on the Type of Morpholine Complexes Formed. Crystal Structure of the First Palladium Tetracarboxylate with Monocarboxylic Acid: Morpholinium Tetrakis(trifluoroacetato)palladate(II), (O(CH2CH2)2NH2)2[Pd(CF3COO)4]. Russ J Coord Chem 45, 615–625 (2019). https://doi.org/10.1134/S1070328419090033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328419090033

Keywords:

Navigation