Skip to main content
Log in

Synthesis, Crystal Structures, and Antibacterial Activity of Manganese(III) Complexes with Schiff Bases

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Two new manganese(III) complexes, [MnL1(EtOH)(Acac)] (I) and [MnL2(DMF)(Esal)] · H2O (II), where L1 and L2 are the dianionic form of 2-[(2-hydroxyphenylimino)methyl]-6-methoxyphenol (H2L1) and 4-chloro-2-[(3-ethoxy-2-hydroxybenzylidene)amino]phenol (H2L2), respectively, Acac is acetylacetone, Esal is 3-ethoxysalicylaldehyde, were prepared and characterized by IR and UV-Vis spectra, as well as single crystal X-ray diffraction (CIF files CCDC nos. 1849854 (I) and 1849855 (II)). Complex I crystallizes as the hexagonal space group P\(\bar {3}\) with unit cell dimensions a = b = 20.4482(9), c = 8.6952(7) Å, V = 3148.6(3) Å3, Z = 6, R1 = 0.0375, wR2 = 0.0957, GOOF = 1.050. Complex II crystallizes as the triclinic space group P¯1 with unit cell dimensions a = 8.1602(12), b = 11.5960(15), c = 15.3859(13) Å, α = 78.873(2)°, β = 83.766(2)°, γ = 84.964(2)°, V = 1416.7(3) Å3, Z = 2, R1 = 0.0733, wR2 = 0.1795, GOOF = 1.029. X-ray analyses indicate that the complexes are manganese(III) species, with the Mn atoms in octahedral coordination. The Schiff bases and the complexes were evaluated for their antibacterial (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescence) activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kaplancikli, Z.A., Altintop, M.D., Ozdemir, A., et al., Lett. Drug Des. Discov., 2014, vol. 11, no. 3, p. 355.

    Article  CAS  Google Scholar 

  2. Peng, D.-L. and Sun, N., Acta Chim. Slov., 2018, vol. 65, no. 4, p. 895.

    Article  CAS  Google Scholar 

  3. Qian, H.Y., Russ. J. Coord. Chem., 2017, vol. 43, no. 11, p. 780. https://doi.org/10.1134/S107032841711007

    Article  CAS  Google Scholar 

  4. Zhu, X.W., Russ. J. Coord. Chem., 2018, vol. 44, no. 5, p. 335. https://doi.org/10.1134/S1070328418050081

    Article  CAS  Google Scholar 

  5. Loncle, C., Brunel, J.M., Vidal, N., et al., Eur. J. Med. Chem., 2004, vol. 39, no. 12, p. 1067.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, Y.-C., Wang, H.-L., Tang, S.-F., et al., Anticancer Res., 2014, vol. 34, no. 10, p. 6034.

    Google Scholar 

  7. Krishnamoorthy, P., Sathyadevi, P., Cowley, A.H., et al., Eur. J. Med. Chem., 2011, vol. 46, no. 8, p. 3376.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, M., Xian, D.-M., Li, H.-H., et al., Aust. J. Chem., 2012, vol. 65, no. 4, p. 343.

    Article  CAS  Google Scholar 

  9. Shi, L., Ge, H.-M., Tan, S.-H., et al., Eur. J. Med. Chem., 2007, vol. 42, no. 4, p. 558.

    Article  CAS  PubMed  Google Scholar 

  10. Rai, N.P., Narayanaswamy, V.K., Govender, T., et al., Eur. J. Med. Chem., 2010, vol. 45, no. 6, p. 2677.

    Article  CAS  PubMed  Google Scholar 

  11. Mandal, S., Karmakar, T.K., Ghosh, A., et al., Polyhedron, 2011, vol. 30, no. 5, p. 790.

    Article  CAS  Google Scholar 

  12. Ghosh, M., Fleck, M., Mahanti, B., et al., J. Coord. Chem., 2012, vol. 65, no. 22, p. 3884.

    Article  CAS  Google Scholar 

  13. Fleck, M., Layek, M., Saha, R., et al., Transition Met. Chem., 2013, vol. 38, no. 7, p. 715.

    CAS  Google Scholar 

  14. Mandal, S., Rout, A.K., Ghosh, A., et al., Polyhedron, 2009, vol. 28, no. 17, p. 3858.

    Article  CAS  Google Scholar 

  15. SMART (version 5.625) and SAINT (version 6.01), Madison: Bruker AXS Inc., 2007.

  16. Sheldrick, G.M., SADABS, Program for Empirical Absorption Correction of Area Detector, Göttingen: Univ. of Göttingen, 1996.

    Google Scholar 

  17. Sheldrick, G.M., SHELXTL V5.1, Software Reference Manual, Göttingen: Univ. of Göttingen, Bruker AXS, Inc., 1997.

    Google Scholar 

  18. Meletiadis, J., Meis, J.F.G.M., Mouton, J.W., et al., J. Clin. Microbiol., 2000, vol. 38, no. 8, p. 2949.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghaemi, A., Keyvani, B., Rayati, S., et al., J. Struct. Chem., 2016, vol. 57, no. 5, p. 1027.

    Article  CAS  Google Scholar 

  20. Manna, S., Mistric, S., Bhunia, A., et al., J. Coord. Chem., 2017, vol. 70, no. 2, p. 296.

    Article  CAS  Google Scholar 

  21. Qian, H.Y., Russ. J. Coord. Chem., 2018, vol. 44, no. 1, p. 32. https://doi.org/10.1134/S1070328418010074

    Article  CAS  Google Scholar 

  22. Khani, S., Montazerozohori, M., Masoudiasl, A., et al., J. Mol. Struct., 2018, vol. 1153, p. 239.

    Article  CAS  Google Scholar 

  23. Zhang, H.Y., Kong, L.Q., and Zhang, D.P., Russ. J. Inorg. Chem., 2016, vol. 61, no. 7, p. 841. https://doi.org/10.1134/S0036023616070202

    Article  CAS  Google Scholar 

  24. Farhadi, S., Mahmoudi, F., and Simpson, J., J. Mol. Struct., 2016, vol. 1108, p. 583.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X.W. Synthesis, Crystal Structures, and Antibacterial Activity of Manganese(III) Complexes with Schiff Bases. Russ J Coord Chem 45, 608–614 (2019). https://doi.org/10.1134/S1070328419080104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328419080104

Keywords:

Navigation