Skip to main content
Log in

Rhenium Tris(pyrazolyl)Borate Oxothiolate Complexes: Syntheses and Structures

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The rhenium complexes TpReOCl(StBu) (I), TpReO(StBu)2 (II), and TpReO(SnC3H7)2 (III) are synthesized using two methods by analogy to the known thiophenyl complexes. Complexes IIII having more electron-donating alkylthiolate ligands are characterized by IR and NMR spectroscopy. The structures of complexes I–III are determined by X-ray diffraction analysis (СIF files CCDC nos. 1892096 (I), 1892097 (II), and 1892098 (III)). The temperature dependence of the spectra of the bis(thiolate) complexes allows one to determine the activation energy for the hindered rotation about the Re–thiolate ligand bond. The by-product of the reaction of TpReOCl2 with NaS-tert-Bu, binuclear oxygen-bridged complex TpReIVCl(S-tert-Bu)O(S-tert-Bu)2ReIVTp, is isolated and structurally characterized (СIF file CCDC no. 1892099).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abrams, M.J., Davison, A., and Jones, A.G., Inorg. Chim. Acta, 1984, vol. 82, p. 125.

    Article  CAS  Google Scholar 

  2. Cohen, E.A., McRae, G.A., Goldwhite, H., et al., Inorg. Chem., 1987, vol. 26, p. 4000.

    Article  CAS  Google Scholar 

  3. Brown, S.N. and Mayer, J.M., Inorg. Chem., 1992, vol. 31, p. 4091.

    Article  CAS  Google Scholar 

  4. Tisato, F., Bolzati, C., Duatti, A., et al., Inorg. Chem., 1993, vol. 32, p. 2042.

    Article  CAS  Google Scholar 

  5. Degnan, I.A., Behm, J., Cook, M.R., and Herrmann, W.A., Inorg. Chem., 1991, vol. 30, p. 2165.

    Article  CAS  Google Scholar 

  6. Trofimenko, S., Long, J.R., Nappier, T., and Shore, S.G., Inorg. Synt., 1980, vol. 12, no. p. 99.

  7. SADABS (version 2008/1), Madison: Bruker AXS Inc., 2008.

  8. Sheldrick, G.M., Acta Crystallogr., Section A: Found. Crystallogr., 2008, vol. 64, p. 112.

    Article  CAS  Google Scholar 

  9. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.

    Article  CAS  Google Scholar 

  10. Neese, F., WIREs Comput. Mol. Sci., 2018, vol. 8, p. e1327. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  11. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  PubMed  Google Scholar 

  12. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1997, vol. 78, p. 1396.

    Article  CAS  Google Scholar 

  13. Weigend, F. and Ahlrichs, R., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 3297.

    Article  CAS  PubMed  Google Scholar 

  14. Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, p. 1456.

    Article  CAS  PubMed  Google Scholar 

  15. Grimme, S., Antony, J., Ehrlich, S., and Krieg, H., J. Chem. Phys., 2010, vol. 132, p. 154104.

    Article  CAS  PubMed  Google Scholar 

  16. Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, p. 6158.

    Article  CAS  Google Scholar 

  17. Cordero, B., Gomez, V., Platero-Prats, A.E., et al., Dalton Trans., 2008, vol. 21, p. 2832.

    Article  CAS  Google Scholar 

  18. Kettler, P.B., Chang, Y.-D., Chen, Q., et al., Inorg. Chim. Acta, 1995, vol. 231, p. 13.

    Article  CAS  Google Scholar 

  19. Herberhold, M., Jin, G.-X., and Milius, W., J. Organomet. Chem., 1996, vol. 512, p. 111.

    Article  CAS  Google Scholar 

  20. Sugimoto, H., Takahira, T., Yoshimura, T., et al., Inorg. Chim. Acta, 2002, vol. 337, p. 203.

    Article  CAS  Google Scholar 

  21. Boehm, G., Wieghardt, K., Nuber, B., and Weiss, J., Inorg. Chem., 1991, vol. 30, p. 3464.

    Article  CAS  Google Scholar 

  22. Bera, J.K., Schelter, E.J., Patra, S.K., et al., Dalton Trans., 2006, vol. 33, p. 4011.

    Article  CAS  Google Scholar 

  23. Kochel, A. and Holynska, M., Inorg. Chem. Commun., 2010, vol. 13, p. 782.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The quantum chemical calculations were performed in the framework of the state task of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the sphere of basic research. The study was carried out using the equipment of the Center for Collective Use Physical Methods of Investigation at the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 16-03-00798) and the Presidium of the Russian Academy of Sciences (program no. I.35.2.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Skabitskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skabitskii, I.V., Sakharov, S.G., Pasynskii, A.A. et al. Rhenium Tris(pyrazolyl)Borate Oxothiolate Complexes: Syntheses and Structures. Russ J Coord Chem 45, 539–547 (2019). https://doi.org/10.1134/S1070328419080086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328419080086

Keywords:

Navigation