Skip to main content
Log in

The Nature of Conformational Polymorphism in the Crystals of Ph3Sb(O2CCH2–CH=CH2)2

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Crystallization of the Ph3Sb(O2CCH2−CH=CH2)2 complex upon fast solvent (benzene) evaporation gives monoclinic crystals (I), whereas in the case of slow evaporation, triclinic crystals are formed (II). Also, monoclinic crystals are spontaneously transformed into triclinic crystals within 6 months. It was shown that the presence of voids near one carboxylate ligand in the monoclinic phase of Ph3Sb-(O2CCH2−CH=CH2)2 decreases the energy of intermolecular interactions and, as a consequence, leads to a conformational transition with a noticeable decrease in the crystal lattice energy. Thus, the presence of voids in the monoclinic phase crystal allows the formation of a thermodynamically more favorable conformation of the molecule in the crystal. Several structural models were determined for the Ph3Sb(O2CCH2−CH=CH2)2 complex (CIF files no. 1887561 (IIAM), model of non-interacting atoms; 1887562 (I), multipole model; 1887563 (IIIAM), model of non-interacting atoms; 1887564 (II), multipole model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bajpai, K., Singhal, R., and Srivastava, R.C., Indian J. Chem., Sect. A: Inorg., Bio-Inorg., Phys., Theor. Anal. Chem., 1979, vol. 18, p. 73.

    Google Scholar 

  2. Singhal, K., Rastogi, R., and Raj, P., Indian J. Chem., Sect. A: Inorg., Bio-Inorg., Phys., Theor. Anal. Chem., 1987, vol. 26, p. 146.

    Google Scholar 

  3. Ma, Y., Li, J., Xuan, Z., and Liu, R., J. Organomet. Chem., 2001, vol. 620, nos. 1–2, p. 235.

    Article  CAS  Google Scholar 

  4. Liu, R.-C., Ma, Y.-Q., Yu, L., et al., Appl. Organomet. Chem., 2003, vol. 17, no. 9, p. 662.

    Article  CAS  Google Scholar 

  5. Yu, L., Ma, Y.-Q., Liu, R.-C., et al., Polyhedron, 2004, vol. 23, no. 5, p. 823.

    Article  CAS  Google Scholar 

  6. Yu, L., Ma, Y.-Q., Wang, G.-C., et al., Heteroat. Chem., 2004, vol. 15, no. 1, p. 32.

    Article  CAS  Google Scholar 

  7. Hadjikakou, S.K., Ozturk, I.I., Banti, C.N., et al., J. Inorg. Biochem., 2015, vol. 153, p. 293.

    Article  CAS  PubMed  Google Scholar 

  8. Islam, A., Rodrigues, B.L., Marzano, I.M., et al., Eur. J. Med. Chem., 2016, vol. 109, p. 254.

    Article  CAS  PubMed  Google Scholar 

  9. US Patent 3287210, 1966.

  10. Organometallic Polymers, Carraher, C.E., Pittman, C.U., and Sheats, J.E., Eds., Elsevier, 1978.

    Google Scholar 

  11. Koton, M.M.: Metalloorganicheskie soedineniya i radikaly (Organometallic Compounds and Radicals), Moscow: Nauka, 1985.

  12. Gushchin, A.V., Moiseev, D.V., and Dodonov, V.A., Russ. Chem. Bull., 2001, vol. 50, no. 7, p. 1291.

    Article  CAS  Google Scholar 

  13. Moiseev, D.V., Gushchin, A.V., Shavirin, A.S., et al., J. Organomet. Chem., 2003, vol. 667, nos. 1–2, p. 176.

    Article  CAS  Google Scholar 

  14. Qin, W., Yasuike, S., Kakusawa, N., et al., J. Organomet. Chem., 2008, vol. 693, no. 17, p. 2949.

    Article  CAS  Google Scholar 

  15. Passarelli, J., Murphy, M., Del Re.R., et al., SPIE Advanced Lithography, 2015, vol. 9425, p. 94250.

    Google Scholar 

  16. Gushchin, A.V., Sharutin, D.V., Prytkova, L.K., et al., Zh. Obshch. Khim., 2011, vol. 81, no. 3, p. 493.

    CAS  Google Scholar 

  17. Data Collection. Reduction and Correction Program, CrysAlis Pro-Software Package, Agilent Technologies, 2012.

  18. SAINT. Data Reduction and Correction Program, Version 8.27B, Madison: Bruker AXS Inc., 2012.

  19. SCALE3 ABSPACK: Empirical Absorption Correction. CrysAlis Pro-Software Package, Agilent Technologies, 2012.

  20. Sheldrick, G.M., SADABS-2012/1. Bruker/Siemens Area Detector Absorption Correction Program, Madison (WI, USA): Bruker AXS Inc., 2012.

    Google Scholar 

  21. Sheldrick, G.M. SHELXTL. V.6.14. Structure Determination Software Suite, Madison: Bruker AXS, 2003.

    Google Scholar 

  22. Hansen, N.K. and Coppens, P., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1978, vol. 34, no. 6, p. 909.

    Article  Google Scholar 

  23. Jelsch, C., Guillot, B., Lagoutte, A., et al., J. Appl. Crystallogr., 2005, vol. 38, no. 1, p. 38.

    Article  CAS  Google Scholar 

  24. Allen, F.H., Kennard, O., Watson, D.G., et al., J. Chem. Soc., Perkin Trans., 1987, no. 12, p. 2.

  25. Hirshfeld, F., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 2, p. 239.

    Article  Google Scholar 

  26. Stash, A. and Tsirelson, V., J. Appl. Crystallogr., 2002, vol. 35, no. 3, p. 371.

    Article  CAS  Google Scholar 

  27. Addison, A.W., Rao, T.N., Reedijk, J., et al., Dalton Trans., 1984, no. 7, p. 1349.

  28. Groom, C.R., Bruno, I.J., Lightfoot, M.P., et al., Acta Crystallogr., 2016, vol. 72, no. 2, p. 171.

    CAS  Google Scholar 

  29. Bader, R.F.W., Atoms in Molecules, A Quantum Theory, Oxford: Oxford Univ. Press, 1990.

    Google Scholar 

  30. Fukin, G.K., Samsonov, M.A., Kalistratova, O.S., et al., Struct. Chem., 2016, vol. 27, no. 1, p. 357.

    Article  CAS  Google Scholar 

  31. Fukin, G.K., Samsonov, M.A., Arapova, A.V., et al., J. Solid State Chem., 2017, vol. 254, p. 32.

    Article  CAS  Google Scholar 

  32. Fukin, G.K., Samsonov, M.A., Baranov, E.V., et al., Russ. J. Coord. Chem., 2018, vol. 44, no. 10, p. 626. https://doi.org/10.1134/S1070328418100020

    Article  CAS  Google Scholar 

  33. Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, nos. 3–4, p. 170.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the scientific equipment of the Center for Collective use “Analytical Center of the Institute of Organometallic Chemistry, Russian Academy of Sciences.”

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 17-03-01257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Fukin.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukin, G.K., Baranov, E.V., Cherkasov, A.V. et al. The Nature of Conformational Polymorphism in the Crystals of Ph3Sb(O2CCH2–CH=CH2)2. Russ J Coord Chem 45, 585–591 (2019). https://doi.org/10.1134/S1070328419080025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328419080025

Keywords:

Navigation