Russian Journal of Coordination Chemistry

, Volume 44, Issue 6, pp 400–409 | Cite as

Europium and Ytterbium Complexes with the Redox Active Acenaphthene-1,2-Diimine Ligand

  • A. A. Skatova
  • D. S. Yambulatov
  • I. L. Fedyushkin
  • E. V. Baranov


The oxidation of [(Dpp-Bian)Eu(Dme)2] (I) (Dpp-Bian is the 1,2-bis[(2,6-diisopropylphenyl) imino]acenaphthene dianion, Dme = 1,2-dimethoxyethane), prepared in situ, with 0.5 mol equiv. of iodine in Thf gives europium(II) dimer, [(Dpp-Bian)Eu(μ-I)(Thf)2]2 (II) (Thf = tetrahydrofuran), with the Dpp-Bian ligand as radical anion. The exchange reaction of II with potassium dithiocarbamate affords europium( II) dimer, [(Dpp-Bian)Eu[SC(S)NMe2](Thf)]2 (III), which also contains the Dpp-Bian radical anion. However, the oxidation of the ytterbium complex [(Dpp-Bian)Yb(Dme)2] (IV) with 0.5 mol equiv. of [Me2NC(S)S]2 gives the monomeric product [(Dpp-Bian)Yb[SC(S)NMe2](Dme)] (V), in which Dpp-Bian is still the dianion and the ytterbium atom is oxidized to the trivalent state. The reaction of II with potassium thiocyanate gives europium(II) isothiocyanate complex with the radical anion diimine ligand [(Dpp-Bian)Eu(NCS)(Dme)2] (VI). The molecular structures of complexes II, III, V, and VI were determined by X-ray diffraction (CIF files CCDC 1576687–1576690, respectively).

Key words

europium ytterbium complexes acenaphthene-1,2-diimines molecular structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fedushkin, I.L., Maslova, O.V., Morozov, A.G., et al., Angew. Chem., Int. Ed. Engl., 2012, vol. 51, no. 42, p. 10584.CrossRefGoogle Scholar
  2. 2.
    Fedushkin, I.L., Skatova, A.A., Yambulatov, D.S., et al., Russ. Chem. Bull., 2015, vol. 64, no. 1, p. 38.CrossRefGoogle Scholar
  3. 3.
    Fedushkin, I.L., Yambulatov, D.S., Skatova, A.A., et al., Inorg. Chem., 2017, vol. 56, no. 16, p. 9825.CrossRefPubMedGoogle Scholar
  4. 4.
    Yambulatov, D.S., Skatova, A.A., Fedyushkin, I.L., and Cherkasov, A.V., Russ. Chem. Bull., 2017, no. 7, p. 1187.CrossRefGoogle Scholar
  5. 5.
    Paulovicova, A., El-Ayaan, U., Shibayama, K., et al., Eur. J. Inorg. Chem., 2001, no. 10, p. 2641.CrossRefGoogle Scholar
  6. 6.
    Fedushkin, I.L., Maslova, O.V., Baranov, E.V., and Shavyrin, A.S., Inorg. Chem., 2009, vol. 48, no. 6, p. 2355.CrossRefPubMedGoogle Scholar
  7. 7.
    CrysalisPro. Data Collection, Reduction and Correction Program, CrysalisPro–Software Package, Agilent Technologies, 2012.Google Scholar
  8. 8.
    SAINT. Data Reduction and Correction Program. Version 8.37A, Madison: Bruker AXS, 2012.Google Scholar
  9. 9.
    Sheldrick G.M., SHELXTL. Version 6.14. Structure Determination Software Suite, Madison: Bruker AXS, 2003.Google Scholar
  10. 10.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, p. 3.CrossRefGoogle Scholar
  11. 11.
    Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.CrossRefGoogle Scholar
  12. 12.
    Sheldrick G.M., SADABS. Version 2016/2. Bruker/Siemens Area Detector Absorption Correction Program, Madison: Bruker AXS, 2016.Google Scholar
  13. 13.
    CrysalisPro. SCALE3 ABSPACK: Empirical Absorption Correction, Agilent Technologies, 2012.Google Scholar
  14. 14.
    Selinsky, R.S., Han, J.H., Morales Perez, E.A., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 45, p. 15997.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mahato, M., Jana, P.P., Harms, K., and Nayek, H.P., RSC Adv., 2015, vol. 5, no. 76, p. 62167.CrossRefGoogle Scholar
  16. 16.
    Liu, S.-S., Lang, K., Zhang, Y.-Q., et al., Dalton Trans., 2016, vol. 45, no. 19, p. 8149.CrossRefPubMedGoogle Scholar
  17. 17.
    Fedushkin, I.L., Maslova, O.V., Hummert, M., and Schumann, H., Inorg. Chem., vol. 49, no. 6, p. 2901.Google Scholar
  18. 18.
    Fedushkin, I.L., Nikipelov, A.S., and Skatova, A.A., Eur. J. Inorg. Chem., 2009, vol. 2009, no. 25, p. 3742.CrossRefGoogle Scholar
  19. 19.
    Bochkarev, M.N., Zakharov, L.N., and Kalinina, G.S., in Organoderivatives of Rare Earth Elements, Shyama, P.S., Ed., London: Kluwer Academic, 1995, p. 556.Google Scholar
  20. 20.
    Savard, D. and Leznoff, D.B., Dalton Trans., 2013, vol. 42, no. 42, p. 14982.CrossRefPubMedGoogle Scholar
  21. 21.
    Bakker, J.M., Deacon, G.B., Forsyth, C.M., et al., Eur. J. Inorg. Chem., 2010, vol. 2010, no. 18, p. 2813.CrossRefGoogle Scholar
  22. 22.
    Bomibieri, G., Benetollo, F., and Polo, A., Polyhedron, 1989, vol. 8, no. 17, p. 2157.CrossRefGoogle Scholar
  23. 23.
    Baer, C. and Pike, J., J. Chem. Educ., 2010, vol. 87, no. 7, p. 724.CrossRefGoogle Scholar
  24. 24.
    Fedushkin, I.L., Maslova, O.V., Hummert, M., and Schumann, H., Inorg. Chem., 2010, vol. 49, no. 6, p. 2901.CrossRefPubMedGoogle Scholar
  25. 25.
    Guo, Y.-C., Ma, Q.-G., Chen, S.-Y., et al., Chin. J. Struct. Chem., 2015, vol. 34, no. 7, p. 1028.Google Scholar
  26. 26.
    Liu, G.-Y., Xu, L.-Y., Zhou, F., et al., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 27, p. 11554.CrossRefPubMedGoogle Scholar
  27. 27.
    Sivasekar, S., Ramalingam, K., Rizzoli, C., and Alexander, N., Inorg. Chim. Acta, 2014, vol. 419, p. 82.CrossRefGoogle Scholar
  28. 28.
    Goh, L.Y., Weng, Z., Leong, W.K., and Leung, P.H., Organometallics, 2002, vol. 21, no. 21, p. 4398.CrossRefGoogle Scholar
  29. 29.
    Okubo, T., Tanaka, N., Kim, K.H., et al., Dalton Trans., 2011, vol. 40, no. 10, p. 2218.CrossRefPubMedGoogle Scholar
  30. 30.
    Langer, R., Wünsche, L., Fenske, D., and Fuhr, O., Z. Anorg. Allg. Chem., 2009, vol. 635, no. 15, p. 2488.Google Scholar
  31. 31.
    Bino, A., Cotton, F.A., Dori, Z., and Sekutowski, J.C., Inorg. Chem., 1978, vol. 17, no. 10, p. 2946.CrossRefGoogle Scholar
  32. 32.
    Egold, H., Flörke, U., and Klose, S., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2002, vol. 58, no. 3, p. m116.CrossRefGoogle Scholar
  33. 33.
    Mallick, S., Ghosh, M.K., Mohapatra, M., et al., Inorg. Chim. Acta, 2015, vol. 424, p. 129.CrossRefGoogle Scholar
  34. 34.
    Lei, X., Huang, Z., Liu, Q., et al., Inorg. Chem., 1989, vol. 28, no. 23, p. 4302.CrossRefGoogle Scholar
  35. 35.
    Brayton, D.F., Tanabe, K., Khiterer, M., et al., Inorg. Chem., 2006, vol. 45, no. 15, p. 6064.CrossRefPubMedGoogle Scholar
  36. 36.
    Ramalingam, K., Rizzoli, C., and Sivagurunathan, G.S., New J. Chem., 2016, vol. 40, no. 3, p. 2489.CrossRefGoogle Scholar
  37. 37.
    Tilley, T.D., Andersen, R.A., Zalkin, A., and Templeton, D.H., Inorg. Chem., 1982, vol. 21, no. 7, p. 2644.CrossRefGoogle Scholar
  38. 38.
    Wang, Y., Liao, J.H., and Ueng, C.H., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1986, vol. 42, no. 10, p. 1420.CrossRefGoogle Scholar
  39. 39.
    Fedushkin, I.L., Chudakova, V.A., Fukin, G.K., et al., Russ. Chem. Bull., 2004, vol. 53, no. 12, p. 2744.CrossRefGoogle Scholar
  40. 40.
    Thames, A.T., White, F.D., Pham, L.N., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2012, vol. 68, no. 12, p. m1530.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Skatova
    • 1
  • D. S. Yambulatov
    • 1
  • I. L. Fedyushkin
    • 1
    • 2
  • E. V. Baranov
    • 1
  1. 1.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Kozma Minin Nizhny Novgorod State Pedagogical UniversityNizhny NovgorodRussia

Personalised recommendations