Russian Journal of Coordination Chemistry

, Volume 44, Issue 4, pp 272–283 | Cite as

Redox Isomerism in o-Semiquinonato Cobalt Complexes in the Crystalline Phase

  • A. A. Zolotukhin
  • M. P. Bubnov
  • V. K. Cherkasov
  • G. A. Abakumov
Article
  • 2 Downloads

Abstract

The key regularities of redox isomerism of six-coordinate bis-semiquinonato cobalt complexes in the crystalline phase are considered. The factors determining the temperature of transition between the redox isomers of various cobalt complexes (mononuclear and binuclear complexes, coordination polymers) were described. The transition parameters were shown to depend not only on the electronic and spatial structure of the ligands in a particular complex, but also on the crystal structure of the complex and intermolecular interactions in the lattice.

Keywords

redox active ligands o-quinones redox isomerism cobalt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Drouza, C., Vlasiou, M., and Keramidas, A.D., Dalton Trans., 2013, vol. 42, p. 11831.CrossRefGoogle Scholar
  2. 2.
    Caneschi, A. and Dei, A., Angew. Chem., Int. Ed. Engl., 1998, vol. 37, p. 3005.CrossRefGoogle Scholar
  3. 3.
    Attia, A.S. and Pierpont, C.G., Inorg. Chem., 1995, vol. 34, p. 1172.CrossRefGoogle Scholar
  4. 4.
    Panja, A., Inorg. Chem. Commun., 2012, vol. 24, p. 140.CrossRefGoogle Scholar
  5. 5.
    Leeladee, P., Baglia, R.A., Prokop, K.A., et al., J. Am. Chem. Soc., 2012, vol. 134, p. 10397.CrossRefGoogle Scholar
  6. 6.
    Shaikh, N., Goswami, S., Panja, A., et al., Inorg. Chem., 2004, vol. 43, p. 5908.CrossRefGoogle Scholar
  7. 7.
    Pierpont, C.G., Coord. Chem. Rev., 2001, vols. 216-217, p. 99.CrossRefGoogle Scholar
  8. 8.
    Tezgerevska, T., Alley, K.G., and Boskovic, C., Coord. Chem. Rev., 2014, vol. 268, p. 23.CrossRefGoogle Scholar
  9. 9.
    Ohtsu, H. and Tanaka, K., Chem.-Eur. J., 2005, vol. 11, p. 3420.CrossRefGoogle Scholar
  10. 10.
    Shimazaki, Y., Tani, F., Fukui, K., et al., J. Am. Chem. Soc., 2003, vol. 125, p. 10512.CrossRefGoogle Scholar
  11. 11.
    Abakumov, G.A., Garnov, V.A., Nevodchikov, V.I., et al., Dokl. Akad. Nauk SSSR, 1989, vol. 304, no. 1, p. 107.Google Scholar
  12. 12.
    Kundu, N., Maity, M., Chatterjee, P.B., et al., J. Am. Chem. Soc., 2011, vol. 133, p. 20104.CrossRefGoogle Scholar
  13. 13.
    Abakumov, G.A., Nevodchikov, V.I., and Cherkasov, V.K., Izv. Akad. Nauk SSSR, Ser. Khim., 1986, no. 1, p. 65.Google Scholar
  14. 14.
    Abakumov, G.A., Nevodchikov, V.I., Cherkasov, V.K., et al., J. Organomet. Chem., 1988, vol. 341, p. 485.CrossRefGoogle Scholar
  15. 15.
    Abakumov, G.A., Nevodchikov, V.I., Cherkasov, V.K., et al., Izv. Akad. Nauk SSSR, 1987, no. 8, p. 1861.Google Scholar
  16. 16.
    Ando, I., Fukuishi, T., Ujimoto, K., et al., Inorg. Chim. Acta, 2012, vol. 390, p. 47.CrossRefGoogle Scholar
  17. 17.
    Fedushkin, I., Maslova, O., Morozov, A., et al., Angew. Chem., Int. Ed. Engl., 2012, vol. 51, p. 10584.CrossRefGoogle Scholar
  18. 18.
    Abakumov, G.A., Cherkasov, V.K., and Lobanov, A.V., Dokl. Akad. Nauk SSSR, 1982, vol. 266, no. 2, p. 361.Google Scholar
  19. 19.
    Abakumov, G.A., Cherkasov, V.K., Bubnov, M.P., et al., Dokl. Ross. Akad. Nauk, 1993, vol. 328, no. 3, p. 332.Google Scholar
  20. 20.
    Hendrickson, D.N. and Pierpont, C.G., Top. Curr. Chem., 2004, vol. 234, p. 63.CrossRefGoogle Scholar
  21. 21.
    Evangelio, E. and Ruiz-Molina, D., Eur. J. Inorg. Chem., 2005, p. 2957.Google Scholar
  22. 22.
    Abakumov, G.A., Cherkasov, V.K., Nevodchikov, V.I., et al., Proc. of the XIV Int. Conf. on Organometallic Chemistry, Detroit (USA), 1990, p. 278.Google Scholar
  23. 23.
    Adams, D.M., Dei, A., Rheingold, A.L., et al., Angew. Chem., Int. Ed. Engl., 1993, vol. 32, p. 880.CrossRefGoogle Scholar
  24. 24.
    Adams, D.M., Dei, A., Rheingold, A.L., et al., J. Am. Chem. Soc., 1993, vol. 115, p. 8221.CrossRefGoogle Scholar
  25. 25.
    Bubnov, M.P., Nevodchikov, V.I., Fukin, G.K., et al., Inorg. Chem. Commun., 2007, vol. 10, no. 9, p. 989.CrossRefGoogle Scholar
  26. 26.
    Zakharov, L.N., Struchkov, Yu.T., Abakumov, G.A., and Nevodchikov, V.I., Koord. Khim., 1990, vol. 16, no. 8, p. 1101.Google Scholar
  27. 27.
    Lebedev, B.V., Smirnova, N.N., Abakumov, G.A., et al., J. Chem. Thermodyn., 2002, vol. 34, p. 2093.CrossRefGoogle Scholar
  28. 28.
    Abakumov, G.A., Bubnov, M.P., Cherkasov, V.K., et al., Russ. J. Phys. Chem. A, 2008, vol. 82, no. 2, p. 172.Google Scholar
  29. 29.
    Bubnov, M.P., Arapova, A.V., Cherkasov, V.K., et al., Proc. of the III Intern. Conf. on High-Spin Molecules and Molecular Magnets, Ivanovo, 2006, p. 48.Google Scholar
  30. 30.
    Arapova, A.V., Bubnov, M.P., Abakumov, G.A., et al., Russ. J. Phys. Chem. A, 2009, vol. 83, no. 8, p. 1257.CrossRefGoogle Scholar
  31. 31.
    Buchanan, R.M. and Pierpont, C.G., J. Am. Chem. Soc., 1980, vol. 102, p. 4951.CrossRefGoogle Scholar
  32. 32.
    Jung, O.-S., Jo, D.H., and Lee, Y.-A., Inorg. Chem., 1998, p. 5875.Google Scholar
  33. 33.
    Bubnov, M.P., Skorodumova, N.A., Bogomyakov, A.S., et al., Izv. Akad. Nauk, Ser. Khim., 2011, no. 3, p. 440.Google Scholar
  34. 34.
    Jung, O.-S. and Pierpont, C.G., J. Am. Chem. Soc., 1994, vol. 116, p. 1127.CrossRefGoogle Scholar
  35. 35.
    Bubnov, M.P., Skorodumova, N.A., Arapova, A.V., et al., Inorg. Chem., 2015, vol. 54, p. 7767.CrossRefGoogle Scholar
  36. 36.
    Jung, O.-S. and Pierpont, C.G., Inorg. Chem., 1994, vol. 33, p. 2227.CrossRefGoogle Scholar
  37. 37.
    Bubnov, M., Skorodumova, N., Arapova, A., et al., Polyhedron, 2015, vol. 85, p. 165.CrossRefGoogle Scholar
  38. 38.
    Protasenko, N.A., Poddel’sky, A.I., Bogomyakov, A.S., et al., Polyhedron, 2013, vol. 49, p. 239.CrossRefGoogle Scholar
  39. 39.
    Pierpont, C.G. and Buchanan, R.M., Coord. Chem. Rev., 1981, vol. 38, p. 45.CrossRefGoogle Scholar
  40. 40.
    Jung, O.-S. and Pierpont, C.G., Inorg. Chem., 1994, vol. 33, p. 2227.CrossRefGoogle Scholar
  41. 41.
    Mulyana, Y., Poneti, G., Moubaraki, B., et al., Dalton Trans., 2010, vol. 39, p. 4757.CrossRefGoogle Scholar
  42. 42.
    Jung, O.-S., Jo, D.H., Lee, Y.-A., et al., Inorg. Chem., 1997, vol. 36, p. 19.CrossRefGoogle Scholar
  43. 43.
    Arapova, A.V., Bubnov, M.P., Smirnova, N.N., et al., Russ. J. Phys. Chem., 2014, vol. 88, no. 1, p. 1.CrossRefGoogle Scholar
  44. 44.
    Roux, C., Adams, D.M., Itie, J.P., et al., Inorg. Chem., 1996, vol. 35, p. 2846.CrossRefGoogle Scholar
  45. 45.
    Markevtsev, I.N., Monakhov, M.P., Platonov, V.V., et al., J. Magn. Magn. Mater., 2006, vol. 300, p. e407.CrossRefGoogle Scholar
  46. 46.
    Yokoyama, T., Okamoto, K., Nagai, K., et al., Chem. Phys. Lett., 2001, vol. 345, p. 272.CrossRefGoogle Scholar
  47. 47.
    Poneti, G., Mannini, M., Sorace, L., et al., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, p. 1954.CrossRefGoogle Scholar
  48. 48.
    Francisco, T.M., Gee, W.J., and Shepherd, H.J., J. Phys. Chem. Lett., 2017, vol. 8, no. 19, p. 4774.CrossRefGoogle Scholar
  49. 49.
    Cui, A., Takahashi, K., Fujishima, A., et al., J. Photochem. Photobiol., A, 2004, vol. 167, p. 69.CrossRefGoogle Scholar
  50. 50.
    Tashiro, A., Kanegawa, S., and Sato, O., et al., Polyhedron, 2013, vol. 66, p. 167.CrossRefGoogle Scholar
  51. 51.
    Sato, O., Hayami, S., Gu, Z.-Z., et al., Chem. Phys. Lett., 2002, vol. 355, p. 169.CrossRefGoogle Scholar
  52. 52.
    Sato, O., Hayami, S., Gu, Z.-Z., et al., Phase Trans., 2002, vol. 75, p. 779.CrossRefGoogle Scholar
  53. 53.
    Sato, O., Cui, A., Matsuda, R., et al., Acc. Chem. Res., 2007, vol. 40, p. 361.CrossRefGoogle Scholar
  54. 54.
    Lukyanov, A.Yu., Bubnov, M.P., Skorodumova, N.A., et al., Solid State Sci., 2015, vol. 48, p. 13.CrossRefGoogle Scholar
  55. 55.
    Schmidt, R.D., Shultz, D.A., and Martin, J.D., Inorg. Chem., 2010, vol. 49, p. 3162.CrossRefGoogle Scholar
  56. 56.
    Schmidt, R.D., Shultz, D.A., Martin, J.D., et al., J. Am. Chem. Soc., 2010, vol. 132, p. 6261.CrossRefGoogle Scholar
  57. 57.
    Kiriya, D., Chang, H.-C., and Kitagawa, S., J. Am. Chem. Soc., 2008, vol. 130, p. 5515.CrossRefGoogle Scholar
  58. 58.
    Kiriya, D., Chang, H.-C., Nakamura, K., et al., Chem. Mater., 2009, vol. 21, p. 1980.CrossRefGoogle Scholar
  59. 59.
    Fursova, E.Yu., Kuznetsova, O.V., Tret’yakov, E.V., et al., Izv. Akad. Nauk, Ser. Khim., 2011, vol. 60, no. 5, p. 791.Google Scholar
  60. 60.
    Bin-Salamon, S., Brewer, S.H., Depperman, E.C., et al., Inorg. Chem., 2006, vol. 45, p. 4461.CrossRefGoogle Scholar
  61. 61.
    Hearns, N.G.R., Korcok, J.L., Paquette, M.M., et al., Inorg. Chem., 2006, vol. 45, p. 8817.CrossRefGoogle Scholar
  62. 62.
    Liang, H., Na, Y.M., Chun, I.S., et al., Bull. Chem. Soc. Jpn., 2007, vol. 80, p. 916.CrossRefGoogle Scholar
  63. 63.
    Bubnov, M.P., Skorodumova, N.A., Zolotukhin, A.A., et al., Z. Anorg. Allg. Chem., 2014, vol. 11, p. 2177.CrossRefGoogle Scholar
  64. 64.
    Jung, O.-S. and Pierpont, C.G., J. Am. Chem. Soc., 1994, vol. 116, p. 2229.CrossRefGoogle Scholar
  65. 65.
    Imaz, I., Maspoch, D., Rodrigues-Blanco, C., et al., Angew. Chem., 2008, vol. 120, p. 1883.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Zolotukhin
    • 1
  • M. P. Bubnov
    • 1
  • V. K. Cherkasov
    • 1
  • G. A. Abakumov
    • 1
  1. 1.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations