Russian Journal of Coordination Chemistry

, Volume 44, Issue 4, pp 252–257 | Cite as

Theoretical Studies of Cycloaddition to Metal-Activated Substrates with Isocyanide Ligands

  • A. S. Novikov


The results of theoretical studies of the reactions of cycloaddition to the metal-activated substrates with the isocyamide ligands performed by the author and coworkers within the recent five years are generalized and examined. The reaction mechanisms, main factors, and driving forces affecting the kinetic and thermodynamic parameters of the processes are considered.


cycloaddition isocyanides reactivity mechanisms of reactions quantum-chemical calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bokach, N.A., Kuznetsov, M.L., and Kukushkin, V.Yu., Coord. Chem. Rev., 2011, vol. 255, p. 2946.CrossRefGoogle Scholar
  2. 2.
    Zhong, R., Lindhorst, A.C., Groche, F.J., and Kuhn, F.E., Chem. Rev., 2017, vol. 117, p. 1970.CrossRefGoogle Scholar
  3. 3.
    Fortman, G.C. and Nolan, S.P., Chem. Soc. Rev., 2011, vol. 40, p. 5151.CrossRefGoogle Scholar
  4. 4.
    Riedel, D., Wurm, T., Graf, K., et al., Adv. Synth. Catal., 2015, vol. 357, p. 1515.CrossRefGoogle Scholar
  5. 5.
    Gaillard, S., Cazin, C.S.J., and Nolan, S.P., Acc. Chem. Res., 2012, vol. 45, p. 778.CrossRefGoogle Scholar
  6. 6.
    Yam, V.W.-W., Au, V.K.-M., and Leung, S.Y.-L., Chem. Rev., 2015, vol. 115, p. 7589.CrossRefGoogle Scholar
  7. 7.
    Catalano, V.J. and Etogo, A.O., Inorg. Chem., 2007, vol. 46, p. 5608.CrossRefGoogle Scholar
  8. 8.
    Pace, A. and Pierro, P., Org. Biomol. Chem., 2009, vol. 7, p. 4337.CrossRefGoogle Scholar
  9. 9.
    Burn, A.R., Kerr, J.H., Kerr, W.J., et al., Org. Biomol. Chem., 2010, vol. 8, p. 2777.CrossRefGoogle Scholar
  10. 10.
    Meanwell, N.A., J. Med. Chem., 2011, vol. 54, p. 2529.CrossRefGoogle Scholar
  11. 11.
    Smith, B.R. and Gambhir, S.S., Chem. Rev., 2017, vol. 117, p. 901.CrossRefGoogle Scholar
  12. 12.
    Hawthorne, M.F. and Maderna, A., Chem. Rev., 1999, vol. 99, p. 3421.CrossRefGoogle Scholar
  13. 13.
    Calabrese, G., Nesnas, J.J., Barbu, E., et al., Drug Discov. Today, 2012, vol. 17, p. 153.CrossRefGoogle Scholar
  14. 14.
    Kueffer, P.J., Maitz, C.A., Khan, A.A., et al., PNAS, 2013, vol. 110, p. 6512.CrossRefGoogle Scholar
  15. 15.
    Boyarskiy, V.P., Bokach, N.A., Luzyanin, K.V., and Kukushkin, V.Yu., Chem. Rev., 2015, vol. 115, p. 2698.CrossRefGoogle Scholar
  16. 16.
    Novikov, A.S., Dement’ev, A.I., and Medvedev, Yu.N., Russ. J. Inorg. Chem., 2012, vol. 57, p. 1576.CrossRefGoogle Scholar
  17. 17.
    Novikov, A.S., Dement’ev, A.I., and Medvedev, Yu.N., Russ. J. Inorg. Chem., 2013, vol. 58, p. 320.CrossRefGoogle Scholar
  18. 18.
    Novikov, A.S. and Kuznetsov, M.L., Inorg. Chim. Acta, 2012, vol. 380, p. 78.CrossRefGoogle Scholar
  19. 19.
    Anisimova, T.B., Kinzhalov, M.A., Guedes da Silva, M.F.C., et al., New J. Chem., 2017, vol. 41, p. 3246.CrossRefGoogle Scholar
  20. 20.
    Novikov, A.S., Kuznetsov, M.L., and Pombeiro, A.J.L., Chem.-Eur. J., 2013, vol. 19, p. 2874.CrossRefGoogle Scholar
  21. 21.
    Novikov, A.S., J. Organomet. Chem., 2015, vol. 797, p. 8.CrossRefGoogle Scholar
  22. 22.
    Domingo, L.R., Saez, J.A., Zaragoza, R.J., and Arno, M., Org. Chem., 2008, vol. 73, p. 8791.CrossRefGoogle Scholar
  23. 23.
    Domingo, L.R., Picher, M.T., and Saez, J.A., Org. Chem., 2009, vol. 74, p. 2726.CrossRefGoogle Scholar
  24. 24.
    Domingo, L.R. and Perez, P., Org. Biomol. Chem., 2013, vol. 11, p. 4350.CrossRefGoogle Scholar
  25. 25.
    Kinzhalov, M.A., Novikov, A.S., Luzyanin, K.V., et al., New J. Chem., 2016, vol. 40, p. 521.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations